首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Negative thixotropy in ferric-oxide suspensions   总被引:1,自引:0,他引:1  
Negative thixotropy was observed in suspensions of ferric-oxide particles in mineral oil, in that viscosity increased with time under shear. The enhanced viscosity under the shear was retained under rest, and it decreased gradually by application of shear at lower shear-rate.The ferric-oxide powders used are acicular submicron maghemite and hematite. The dispersing medium is a heavy mineral oil. The suspensions were prepared with a ball mill in 33% by particle weight using a dispersing agent.A qualitative interpretation was made for the development of the phenomenon with a floc model in which suspensions of acicular particles form bulky structures with larger volume fraction of flocs phase at higher rate of shear, accompanied with increase of viscosity. The expanded structures, then, shrink again at lower shear-rate due to the inter-particle attractions.  相似文献   

2.
This paper presents results on the rheological behaviour of suspensions of two kinds of TiO2 particles in two different polymer solutions. The particles differ in their hydrophilic or hydrophobic properties. The dispersing media are a solution of high molecular weight polyisobutylene in decalin and a solution of a low molecular weight polybutene in decalin. The concentrations of polymer are adjusted in order to get the same zero shear viscosity. The shear viscosity measurements display an apparent yield stress in some cases. The existence and the values of the yield stress depend on the volume fraction of solid particles and on the type of particles. The evolution of the intrinsic viscosity and of the maximum packing fraction vs the shear rate is interpreted in terms of evolution of the size and of the shape of aggregates of particles under shear. The effect of temperature on the development of the yield stress is also discussed. The results are completed by microscopic observations.  相似文献   

3.
Concentrated aqueous suspensions of alumina as disperse phase show a particular non-Newtonian time dependent flow behavior. The apparent viscosity measured by means of a rotational viscometer with coaxial cylinders at constant shear rate oscillates with time. The period of the oscillations varies on a scale of several hundred seconds. It is assumed that this behavior is caused by shear induced self-organized structure changes. In order to detect structure changes during the shear process a particle analysis system based on the focused beam reflectance measurement (FBRM) technique was applied. We have found a significant correlation between the oscillations of the viscosity and alterations of the chord length distribution.  相似文献   

4.
A parameter, the product of viscosity of the suspension medium and applied shear rate, is introduced to describe the effect of temperature on the rheological properties of suspensions, considering the mechanism of agglomeration in suspensions. It is found that, by plotting rheograms of the shear stress versus this parameter, a single master curve can be obtained independently of temperature. The dependence of viscosity on temperature and the flow of suspensions are shown to be well described.  相似文献   

5.
 The elastic properties of model suspensions with spherical monodisperse hydrophilic glass spheres that were dispersed in a Newtonian liquid were determined in creep and creep recovery measurements in shear with a magnetic bearing torsional creep rheometer. The creep and creep recovery measurements were performed depending on the applied level of shear stresses ranging from 0.19 Pa to 200 Pa. Since the recoverable creep compliances of the chosen suspending medium (i.e. a low molecular weight polyisobutylene) were far below the lower limit of the resolution of the creep rheometer it can be considered to behave as purely viscous. By applying a large shear stress in the creep tests the investigated suspensions with a volume fraction of Φ t =0.35 behave as Newtonian liquids, too. For these suspensions no significant recoverable creep compliances could be detected, as well. In contrast to the Newtonian state of suspensions at high shear stresses, where a shear induced ordering of the particles can be expected, a non-Newtonian behaviour arises by applying a very low shear stress in the creep test. In this state large recoverable creep compliances were detected for the suspensions. The magnitude of the recoverable creep compliances of the suspensions exceeded the largest creep compliances of polymer melts that are reported in the literature by more than two decades. From the results obtained by creep recovery measurements with a magnetic bearing torsional creep rheometer it can clearly be concluded that the particle structure present in the chosen model suspension gives rise to a pronounced elasticity. Received: 21 November 2000 Accepted: 12 July 2001  相似文献   

6.
For the characterization of the rheological behaviour of a white, high solids, oven-curing enamel for household equipment with regard to its industrial application, attention was focused on the flow aspects involved in laying down process and film formation phenomena, i.e. viscosity at very high and very low shear rate, structural build-up in rest conditions, presence and magnitude of elastic components. Hence, investigations were aimed at (1) the determination of the equilibrium flow curve; the application of the Shangraw-Grim-Mattocks model led to the evaluation of parameters to describe infinite shear-rate viscosity and yield stress; (2) obtaining information about particle aggregation state in shear conditions. Quemada model gave indication that, even at very high shear, particle aggregates are stable; (3) the determination of time-dependent behaviour: elastic components were found to be almost negligible; the Trapeznikov-Fedotova procedure allowed thixotropic build-up in rest conditions to be evaluated, as concerns both amount and kinetics. Remarkable flow features found were: differences in the temperature dependence of viscosity at low shear rate and of yield value for enamels formulated with different pigment volume concentrations and the strong effect of the pigment volume concentration on the initial rate of thixotropic build-up in rest conditions.  相似文献   

7.
A systematic study of the rheological properties of solutions of non-motile microalgae (Chlorella vulgaris CCAP 211-19) in a wide range of volume fractions is presented. As the volume fraction is gradually increased, several rheological regimes are observed. At low volume fractions (but yet beyond the Einstein diluted limit), the suspensions display a Newtonian rheological behaviour and the volume fraction dependence of the viscosity can be well described by the Quemada model (Quemada, Eur Phys J Appl Phys 1:119–127, 1997). For intermediate values of the volume fraction, a shear thinning behaviour is observed and the volume fraction dependence of the viscosity can be described by the Simha model (Simha, J Appl Phys 23:1020–1024, 1952). For the largest values of the volume fraction investigated, an apparent yield stress behaviour is observed. Increasing and decreasing stress ramps within this range of volume fractions indicate a thixotropic behaviour as well. The rheological behaviour observed within the high concentration regime bears similarities with the measurements performed by Heymann and Aksel (Phys Rev E 75:021505, 2007) on polymethyl methacrylate suspensions: irreversible flow behaviour (upon increasing/decreasing stresses) and dependence of the flow curve on the characteristic time of forcing (the averaging time per stress values). All these findings indicate a behaviour of the microalgae suspensions similar to that of suspensions of rigid particles. A deeper insight into the physical mechanisms underlying the shear thinning and the apparent yield stress regime is obtained by an in situ analysis of the microscopic flow of the suspension under shear. The shear thinning regime is associated to the formation of cell aggregates (flocs). Based on the Voronoi analysis of the correlation between the cell distribution and cell sizes, we suggest that the repulsive electrostatic interactions are responsible for this microscale organisation. The apparent yield stress regime originates in the formation of large-scale cell aggregates which behave as rigid plugs leading to a maximally random jammed state.  相似文献   

8.
 We investigate the variations in the shear stress and the first and second normal stress differences of suspensions formulated with viscoelastic fluids as the suspending medium. The test materials comprise two different silicone oils for the matrix fluids and glass spheres of two different mean diameters spanning a range of volume fractions between 5 and 25%. In agreement with previous investigations, the shear stress–shear rate functions of the viscoelastic suspensions were found to be of the same form as the viscometric functions of their matrix fluids, but progressively shifted along the shear rate axis to lower shear rates with increasing solid fraction. The normal stress differences in all of the suspensions examined can be conveniently represented as functions of the shear stress in the fluid. When plotted in this form, the first normal stress difference, as measured with a cone and plate rheometer, is positive in magnitude but strongly decreases with increasing solid fraction. The contributions of the first and the second normal stress differences are separated by using normal force measurements with parallel plate fixtures in conjunction with the cone-and-plate observations. In this way it is possible for the first time to quantify successfully the variations in the second normal stress difference of viscoelastic suspensions for solid fractions of up to 25 vol.%. In contrast to measurements of the first normal stress difference, the second normal stress difference is negative with a magnitude that increases with increasing solid content. The changes in the first and second normal stress differences are also strongly correlated to each other: The relative increase in the second normal stress difference is equal to the relative decrease of the first normal stress difference at the same solid fraction. The variations of the first as well as of the second normal stress difference are represented by power law functions of the shear stress with an unique power law exponent that is independent of the solid fraction. The well known edge effects that arise in cone-and-plate as well as parallel-plate rheometry and limit the accessible measuring range in highly viscoelastic materials to low shear rates could be partially suppressed by utilizing a custom- designed guard-ring arrangement. A procedure to correct the guard-ring influence on torque and normal force measurements is also presented. Received: 20 December 2000 Accepted: 7 May 2001  相似文献   

9.
非均匀颗粒材料的类固-液相变行为及本构方程   总被引:2,自引:0,他引:2  
季顺迎 《力学学报》2007,39(2):223-237
以非均匀颗粒介质为研究对象,采用三维离散元方法对其在不同密集度和剪切速率下的动 力过程进行了数值模拟,分析了其在由瞬时接触的快速流动向持续接触的准静态流动的转变 过程及其行为特点. 通过对不同材料性质下相变过渡区内颗粒材料的宏观应力、接触时间数、 配位数、团聚颗粒数量、有效摩擦系数等参量的计算,更加全面地描述了非均匀颗粒材料在 类固-液相变过程中的基本特征. 基于以上数值计算结果,建立了一个适用于颗粒材料 类固态、类液态以及其相变过程的本构方程,并通过剪切室实验结果验证了它的合理性.  相似文献   

10.
We investigate the shear thinning of red blood cell-dextran suspensions. Microscopic images show that at low polymer concentration, aggregation increases with increasing concentration until it reaches a maximum and then decreases again to non-aggregation. This bell-shape dependency is also deduced from the rheological measurements, if the data are correctly normalized by the viscosity of the suspending phase since a significant amount of polymers adsorb to the cell surfaces. We find that the position of the maximum of this shear rate-dependent bell shape increases with increasing viscosity of the suspending phase, which indicates that the dynamic process of aggregation and disaggregation is coupled via hydrodynamic interactions. This hydrodynamic coupling can be suppressed by characterizing a suspension of 80 % hematocrit which yields good agreement with the results from the microscopical images.  相似文献   

11.
The rheological behavior of stable slurries is shown to be characterized by a bimodal model that represents a slurry as made up of a coarse fraction and a colloidal size fine fraction. According to the model, the two fractions behave independently of each other, and the non-Newtonian behavior of the viscosity is solely caused by the colloidal fraction, while the coarse fraction increases the viscosity level through hydrodynamic interactions. Data from experiments run with colloidal coal particles of about 2–3 µm average size dispersed in water show the viscosity of these colloidal suspensions to exhibit a highly shearrate-dependent behavior and, in the high shear limit, to match very closely the viscosity of suspensions of uniform size rigid spheres although the coal volume fraction must be determined semi-empirically. Different amounts of coarse coal particles are added to the colloidal suspension and the viscosity of the truly bimodal slurries measured as a function of shear rate. In agreement with the bimodal model, the measured shear viscosities show the coarse fraction to behave independently of the colloidal fraction and its contribution to the viscosity rise to be independent of the shear rate. It is shown that the shear rate exerted on the colloidal fraction is higher than that applied by the viscometer as a result of hydrodynamic interactions between the coarse particles, and that it is this effective higher shear rate which is necessary to apply in the correlations. For determining the coal volume fraction a relatively simple and quite accurate measurement technique is developed for determining the density and void fraction of coarse porous particles; the technique directly relates volume fraction to mass fraction.  相似文献   

12.
Techniques for measuring the fundamental flow properties of as-mined Victorian brown coal suspensions are developed. Flow properties are presented for Morwell, Yallourn and Loy Yang coals as a function of concentration for fixed particle size distribution. Even at the relatively low solids concentration of 20 to 30 percent by weight, the suspensions exhibit complex non-Newtonian characteristics. Generally at high concentration, the suspensions are thixotropic with a shear rate dependent viscosity and exhibit a yield stress. The inherent thixotropy of the coals can be exploited and it is technically but perhaps not economically feasible to transport the as-mined coals in a pipeline. The power requirement to pump the coals in a pipeline is found to be 10 to 30 times that required to pump black coal in the Black Mesa pipeline in the U.S.A. The differences in the rheological properties of the three coals is related to the surface properties of the coal particle — expressed in terms of carboxylate and inorganic cation content, and to differences in the pore volume of the coals. The flow characteristics of one coal can be converted to that of another simply by varying either the carboxylate or ionic content of the suspension.  相似文献   

13.
The influence of the elastic properties of the suspending medium on the flow of viscoelastic glass bead and glass fibre suspensions through flat orifices was investigated. The results are discussed by contrasting the flow behaviour of the viscoelastic suspensions with that of corresponding suspensions in a Newtonian suspending medium. For the suspensions in a Newtonian oil linear relationships were always found between the pressure loss and the effective velocity gradient in orifice flow. Thus it can be concluded that in this case the influence of the filler on the flow behaviour is independent of the imposed strain. Increasing the filler content or using more anisotropic particles led to higher viscosities and thus to larger pressure losses. It is well known that viscoelastic polyisobutene solutions show strain rate dependent flow behaviour. Due to the increasing influence of elasticity with increasing strain rate, the apparent flow curves can be divided into characteristic regions with different slopes. The addition of filler to such solutions altered the shape of the flow curves and it was found that the onset of “flow hardening” occurred at lower imposed strains. In addition, characteristic changes in the hardening behaviour and flow stability were observed; these were most pronounced for the fibre suspensions, even at low concentrations. For the fibre suspensions, these phenomena could be related to the influence of the fibres on the undisturbed flow field near the orifice, leading, in general, to higher strain velocities between the fibres. On the other hand, enhanced extensional strains are induced at the ends of the fibres and, at the same time, shear flow occurs along the fibres. These two effects counteract each other with respect to the hardening behaviour of the polymer. Similar effects may also occur in the glass bead suspensions, although they would certainly be less pronounced.  相似文献   

14.
Three-dimensional network structures can be built up in disperse systems due to long-range colloidal interactions between the dispersed particles. The rheological behaviour of such coagulation structures has been studied by means of creep and recovery experiments at low shear stresses, i.e. by measuring the shear strain as a function of time under constant stress and after removal of stress. Measurements of this type give insight into the elastic and viscous deformations and the retardation times necessary to reach equilibrium or steady-state conditions.Results obtained with dispersions of pigments in polymer solutions and with monodisperse polymer latexes indicate the existence of an equilibrium state at low shear stresses with a predominant elastic deformation and a high viscosity suggesting that the disperse systems investigated do not behave exactly as rigid gels but apparently exhibit a dynamic equilibrium of structural break-down and formation under applied stress. This behaviour is approximately described by a 4-parameter-model with an instantaneous and a steady-state compliance, one retardation time, and a viscosity.At higher shear stresses thixotropic structural break-down occurs resulting in a transition from the rheological behaviour described here to a liquid-like state with a comparatively low viscosity. In this stress range the viscoelastic properties become strongly time-dependent.These measurements give evidence of the presence of two types of deformation: an instantaneous, purely elastic deformation attributable to the unperturbed coagulation structure and the creep-recovery behaviour of an elastic liquid apparently related to the breaking and re-forming of bonds.  相似文献   

15.
Summary The rheological properties of vinylon fiber suspensions in polymer solutions were studied in steady shear flow. Shear viscosity, first normal-stress difference, yield stress, relative viscosity, and other properties were discussed. Three kinds of flexible vinylon fibers of uniform length and three kinds of polymer solutions as mediums which exhibited remarkable non-Newtonian behaviors were employed. The shear viscosity and relative viscosity ( r ) increased with the fiber content and the aspect ratio, and depended upon the shear rate. Shear rate dependence of r was found only in the low shear rate region. This result was different from that of vinylon fiber suspensions in Newtonian fluids. The first normal-stress difference increased at first slightly with increasing fiber content but rather decreased and showed lower values for high content suspensions than that of the medium. A yield stress could be determined by using a modified equation of Casson type. The flow properties of the fiber suspensions depended on the viscosity of the medium in the suspensions under consideration.With 16 figures and 1 table  相似文献   

16.
The application of an external field (magnetic or electric) to suspensions of particles in a carrier liquid often causes a dramatic increase in the flow resistance. The transient stress response of these systems during the start-up of shear flow was studied as a function of the shear rate, using a system of carbonyl iron particles dispersed in paraffinic spindle oil under magnetic flux densities up to 0.57 T. It was found that initially the stress increased in proportion to the applied strain, reaching a plateau value at a characteristic strain of 0.2. Similar strain dependence of the transient stress behaviour was observed for shear rates spanning the range 0.01 s–1 to 10 s–1, suggesting that strain-governed deformation and rupture of the particle aggregates in the fluid was the main contribution to the response. In addition, the steady state flow curves of these fluids were obtained over the shear rate range 0.1 to 100 s–1.  相似文献   

17.
Stress relaxation in immiscible blends is studied for a well defined shear history, i.e. after prolonged steady state shearing. Model systems are used that consist of quasi-Newtonian liquid polymers. Hence the relaxation is dominated by changes in the morphology of the interface. Both shear stress and the first normal stress are considered. The measurements cover the entire concentration range. For dilute blends the interfacial contribution to the stress relaxation compares well with model predictions. Deviations occur when the matrix phase is slightly elastic. In that case the similarity between the relaxation of shear and normal stresses is also lost. The latter is attributed to a wider drop size distribution.Increasing the concentration of the disperse phase results in a complex evolution of the characteristic relaxation times. The normal stresses relax systematically slower than the shear stresses and the concentration curve includes two maxima. Even for equiviscous components the concentration curves are not symmetrical. It is concluded that even a slight degree of elasticity in the matrix phase drastically affects the morphology and the interfacial relaxation of such blends.  相似文献   

18.
A variety of studies reported in the literature have established that initially well mixed suspensions subjected to non-homogeneous shear flows attain an anisotropic particulate structure. It has also been shown that non-homogeneous shearing causes suspensions of unimodal spheres to demix, i.e., gradients in solids concentration are formed. The objective of this study was to determine the effect of non-homogeneous shear flows on suspensions of bimodal particles, and specifically, to determine if the solids concentration gradients which develop are accompanied by size segregation of the coarse with respect to the fine fraction. We used the simplest and most direct methods to determine the relative solids concentrations: visual observation of tracer particles in transparent suspensions and physical separation of the coarse and fine solid fractions. Three different types of non-homogeneous shear flows were examined, and in each case the data support two main conclusions: 1) suspended particles migrate from regions of high shear rate to regions of low shear rate, and 2) the coarse fraction of particles migrates much faster than the fine fraction, leading to size segregation of initially well-mixed suspensions. While the former conclusion is consistent with other studies reported in the literature, to our knowledge this paper provides the first data supporting and, to a limited extent, quantifying the latter conclusion.  相似文献   

19.
The paper describes how the theology of low concentration brown coal suspensions can be exploited to produce high concentration, low viscosity suspensions which are attractive as a potential coal-water fuel. Brown coal suspensions with solid concentrations approaching those of bituminous black coal have been prepared. The high inherent water content ( 60 wt %) and macroporosity of the brown coal have been reduced by thermal and chemical means. The hydrophobicity of the coal surface has been increased sufficiently to reduce the tendency for swelling and water uptake. This, together with densification, has allowed the solids content to be progressively improved from 30 wt % solids with raw coal to 65 wt% solids with modified coals while maintaining the viscosity of the suspension at a low level. The high solid concentration was achieved without additives.  相似文献   

20.
In this work, the rheological behaviour of high molecular mass polyamide 6 (PA6)/organo-montmorillonite nano-composites, obtained via melt blending, was investigated under shear and extensional flow. Capillary rheometry was used for the measurement of high shear rate steady state shear viscosity and die entrance pressure losses; further, by the application of a converging flow method (Cogswell model) to these experimental results, elongational viscosity data were indirectly calculated. The extensional behaviour was directly investigated by means of melt spinning experiments, and data of apparent elongational viscosity were determined. The results evidenced that the presence of the organo-clay in filled PA6 melts modifies the rheological behaviour of the material, with respect to the unfilled polymer, in dependence on the type of flow experienced by the fluid. In shear flow, the nano-composites showed a slightly lower viscosity than neat PA6, whereas in elongation, they appeared much more viscous, in dependence on the organo-clay content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号