首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Field-induced alignment of O2 and N2 was experimentally studied with laser intensities varying from 10(13) to 10(15) W/cm2. When the laser intensity was below the ionization threshold for these molecules, the interaction between the induced dipole moment of molecules and the laser electric field aligned the molecules along the laser polarization direction. After extinction of the exciting laser, the transient alignment revived periodically. Thus macroscopic ensembles of highly aligned O2 and N2 molecules were obtained under field-free conditions. When the laser intensity exceeded the ionization threshold for these molecules, multielectron ionization and Coulomb explosion occurred. Using two linearly polarized laser pulses with crossed polarization, we demonstrated that the rising edge of the laser pulse aligned the molecules along the laser polarization direction prior to ionization, which resulted in strong anisotropic angular distributions of exploding fragments. These results suggest that the degree of alignment should be taken into account when qualitatively comparing the ion yield of these molecules with their companion atoms.  相似文献   

2.
The alignment of polyatomic molecules under strong 35 ps laser irradiation is investigated for a broad range of laser intensities (10(13)-10(15) W/cm(2)) using time-of-flight mass spectrometry. The dynamic alignment of the molecules under study (C2H5X, X = I, Br, Cl) is verified in single-pulse experiments by recording the fragments' angular distributions, their dependence on the laser intensity, and also the comparison of the ionic signal of the various fragments recorded for linear and circular polarization. For all cases, the angular distributions of the Coulomb explosion fragments are found to be independent of the laser peak intensity, implying that the molecular alignment is taking place during the rise time of the laser pulses at relatively low intensities (approximately 10(13) W/cm(2)). Moreover, the same result implies that the alignment mechanism is close to the adiabatic limit, albeit the laser pulse duration is much shorter than the characteristic rotational times (1/2B) of the molecules under study. Finally, by comparing the angular distributions of the different molecules, we conclude that the degree of alignment is only weakly dependent on the molecular mass and the moment of inertia under the irradiation conditions applied.  相似文献   

3.
The dissociative ionization and the Coulomb explosion of CH3I irradiated by a 35 fs 800 nm laser with a laser intensity of 4 x 10(13) to 6 x 10(14) W/cm2 was studied. In a relatively weak laser field (about 10(13) W/cm2), the dissociative ionization of CH3I took place. The speed distributions of the CH3+ and I+ fragments were measured and fitted using multiple Gaussian functions. Different product channels were found for CH3+ and I+, respectively. In a strong laser field (about 10(14) W/cm2), the multiply ionized fragment ions of Iq+ (q 相似文献   

4.
The interaction of C2H5X, 1-C3H7X, 1-C4H9X, where X = I, Br, Cl, with strong (1 x 10(13)-1.2 x 10(14) W/cm2) 35 ps laser pulses at 1064 nm is studied by means of time-of-flight mass spectrometry. The multielectron ionization following the C-X bond elongation has been verified for the studied molecules. By combination of the intensity dependence of the ion yields, the estimated kinetic energies of the released fragment ions, and their angular distributions, we have identified the different dissociation channels of the transient multiply charged parent ions. From the dependence on the laser intensity of the ratio of the doubly charged halogen ions to the singly charged ones, it is concluded that the molecular coupling with the laser field increases with the molecular size.  相似文献   

5.
利用2D平面模型,求解了描述定向H2^+分子和阿秒XUV脉冲相互作用的薛定谔方程,并求得光电子的角度分布.在计算模型中,采用基态1sσg和第一激发态2pσu的等比例混合态作为初始态,而激光脉冲的光子能量大于电离势,强度为10^14 W/cm^2. 计算结果表明,光电子角分布的非对称性和脉冲的宽度密切相关.这种非对称性实际上是由于初始态的基态和激发态的相干振荡而导致的.当使用长脉冲时,这种相干振荡的周期效应就会被平均而消失,从而产生的光电子能谱会呈对称角分布.  相似文献   

6.
Two-body Coulomb explosion with the C-O bond breaking of methanol induced by intense laser pulses with the duration of Delta t=7 and 21 fs is investigated by the coincidence momentum imaging method. When Delta t=7 fs, the angular distribution of recoil vectors of the fragment ions for the direct C-O bond breaking pathway, CH(3)OH(2+)-->CH(3) (+)+OH(+), exhibits a peak deflected from the laser polarization direction by 30 degrees -45 degrees , and the corresponding angular distribution for the migration pathway, CH(2)OH(2) (+)-->CH(2) (+)+H(2)O(+), in which one hydrogen migrates from the carbon site to the oxygen site prior to the C-O bond breaking, exhibits almost the same profile. When the laser pulse duration is stretched to Delta t=21 fs, the angular distributions for the direct and migration pathways exhibit a broad peak along the laser polarization direction probably due to the dynamical alignment and/or the change in the double ionization mechanism; that is, from the nonsequential double ionization to the sequential double ionization. However, the extent of the anisotropy in the migration pathway is smaller than that in the direct pathway, exhibiting a substantial effect of hydrogen atom migration in the dissociative ionization of methanol interacting with the linearly polarized intense laser field.  相似文献   

7.
We demonstrate molecular orientation by using phase-controlled two-color omega+2omega laser pulses with an intensity of 1.0x10(12) W/cm(2) and a pulse duration of 130 fs. The orientation of three iodine-containing molecules (IBr, CH(3)I, and C(3)H(5)I) was monitored by the directional asymmetries of the photofragment angular distribution in dissociative ionization. In all three molecules, the directional asymmetry showed an oscillating behavior dependent on the relative phase difference between omega and 2omega pulses. The phase dependence of the directional asymmetry observed in iodine ions and counterpart ions were out of phase with each other. This result shows that a phase-controlled omega+2omega optical field discriminates between parallel and antiparallel configurations of aligned molecules that have a permanent dipole. This method performed well because (1) molecular orientation can be achieved by all-optical fields; (2) the direction of orientation is easily switched by changing the sign of the quantum interference; and (3) this method is free from any resonance constraint and thus can be applied to any molecule.  相似文献   

8.
The multi-electron dissociative ionization (MEDI) of alkyl-halide clusters induced by 35 ps (at 266, 532 and 1064 nm) and 20 fs (at 400 and 800 nm) laser pulses is reported. In most cases, the MEDI of clusters is observed at substantially lower laser intensities than those reported for the monomer molecules, while the fragment ions are released with higher kinetic energies. From the comparative analysis of the experimental data, is concluded that the increase of molecular chain and/or the presence of a lighter halogen (I, Br, Cl) in the molecular skeleton results in the increase of the laser intensity thresholds for the appearance of the singly and multiply charged fragment ions. As far as the angular distributions of the ejected ions are concerned, they are found to be dependent on the laser pulse duration. For the observed experimental data, a physical mechanism is proposed, based on the combined action of the laser and the electric field created within the clusters after their single ionization.  相似文献   

9.
We investigate coherent correlation between nonadiabatic rotational excitation and angle-dependent ionization of NO in intense laser fields in the state-resolved manner. When neutral NO molecules are partly ionized in intense laser fields (I(0) > 35 TW/cm(2)), a hole in the rotational wave packet of the remaining neutral NO is created because of the ionization rate depending on the alignment angle of the molecular axis with respect to the laser polarization direction. Rotational state distributions of NO are experimentally observed, and then the characteristic feature that the population at higher J levels is increased by the ionization can be identified. Numerical calculation for solving time-dependent rotational Schro?dinger equations including the effect of the ionization is carried out. The numerical results suggest that NO molecules aligned perpendicular to the laser polarization direction are dominantly ionized at the peak intensity of I(0) = 42 TW/cm(2), where the multiphoton ionization is preferred rather than the tunneling ionization.  相似文献   

10.
Femtosecond (fs) lasers have high intensity and ultrashort pulse duration. Tunneling ionization occurs for molecules subject to such intense laser fields. We have studied the mass spectra of a variety of molecules irradiated by intense fs laser pulses. These molecules include some typical volatile organic compounds contained in human breath and in the atmosphere. The results demonstrate that all of these molecules can be ionized by intense fs laser pulses. Dominant parent ion and some characteristic ionic fragments are observed for each molecule. The degree of fragmentation can be controlled by adjusting the laser intensity. Moreover, saturation ionization can occur for each molecule by increasing the laser intensity. These features indicate that fs laser mass spectrometry can be a sensitive tool to identify and quantify volatile organic compounds in human breath.  相似文献   

11.
Adiabatic alignment of CH(3)I, induced by the anisotropic interaction of this symmetric top molecule with the intense field of a nonresonant infrared laser pulse, has been studied using velocity map imaging. We are using photodissociation imaging with pulsed nanosecond lasers to probe the distribution of the molecular axis in the laboratory space. In contrast to the commonly used probing with femtosecond laser pulses, this technique directly yields the degree of alignment over an extended space-time volume. This will be relevant for future reactive scattering experiments with laser-aligned molecules. The obtained degree of alignment, (cos?(2)θ), measured as a function of the infrared laser intensity, agrees well with a quantum calculation for rotationally cold methyl iodide. The strong infrared laser is also found to modify the photofragmentation dynamics and open up pathways to CH(3)I(+) formation and subsequent fragmentation.  相似文献   

12.
The dissociation dynamics of HOD via two-photon excitation to the C? state have been investigated using the H-atom Rydberg tagging time-of-flight (TOF) technique. The H-atom action spectrum for the C? ← X? transition shows resolved rotational structure. Product translational energy distributions and angular distributions have also been recorded for the H + OD channel for three excited levels each with k(a)′ = 2. From these distributions, quantum state distributions and angular anisotropy parameters (β2 and β4) for the OD product were determined. These results are consistent with the nonadiabatic predissociation picture illustrated in the one-photon dissociation process for H2O. The heterogeneous dissociation pathway via Coriolis coupling is the dominant dissociation process in the present study. A high proportion of the total available energy is deposited into the rotational energy of the OD product. The anisotropic recoil distributions reveal the distinctive contributions from the alignment of the excited states and the dissociation process. Comparisons are also made between the results for HOD and H2O via the equivalent rotational transitions. The OH bond energy, D(o)(H?OD), of the HOD molecule is also determined to be 41283.0 ± 5 cm(-1).  相似文献   

13.
Multiphoton ionization mass spectra of nonvolatile molecules laser desorbed into a supersonic beam are recorded. It is shown by indirect measurements that the laser desorption of neutrals is not mass limited, but lead to the formation of neutrals with intesities large enough for intense signals. To investigate the efficiency of the multiphoton ionization process with varying laser pulse durations, simultaneous laser pulses of 500 fs and 5 ns or 100 fs and 5 ns have been applied to the neutral beam. The energies of both femtosecond and nanosecond laser pulses are held in a comparable magnitude, and thus produce, in the resulting ion intensity, very large differences up to 4 orders of magnitude. For larger evaporated molecules (> 500 u) the ionization efficiency from nanosecond laser pulses drops significantly in comparison to femtosecond laser pulse excitation. A variety of possible reasons for the different ionization and dissociation behavior in femtosecond and nanosecond laser pulse excitations are discussed in this paper. It is rationalized that even with very short laser pulses and large molecules the “ladder switching model” for ionization and fragmentation is valid.  相似文献   

14.
Clusters exhibit an enhancement in ionization rates under intense, ultrafast laser pulses compared to their molecular/atomic counterparts. Studies of ionization enhancement of weakly bound molecules to clusters have not been previously characterized and quantified. We demonstrate that weakly bound ClO to (H(2)O)(n) (n = 1-12) clusters and weakly bound HCl to (H(2)O)(n) (n = 1-12) clusters produce high atomic charge states of chlorine via Coulomb explosion. Density functional theory (DFT) was used to qualitatively compare the interaction energy of ClO with respect to the number of water molecules as well as HCl with respect to the number of water molecules. The chlorine ion signal intensity for each atomic charge state was observed to be dependent on the molecule-cluster bond strength. The observed ionization enhancement was quantified using semiclassical tunneling theory, and it was found that the Cl(3+-5+) and O(2+) charge states are enhanced in ionization. Possible mechanisms of ionization enhancement are explored for weakly bound chlorine species.  相似文献   

15.
Measurements have been made of optical field-induced ionization and fragmentation of methane molecules at laser intensities in the 10(16) W cm(-2) range using near transform limited pulses of 100 fs duration as well as with chirped pulses whose temporal profiles extend up to 1500 fs. Data is taken both in constant-intensity and constant-energy modes. The temporal profile of the chirped laser pulse is found to affect the morphology of the fragmentation pattern that is measured. Besides, the sign of the chirp also affects the yield of fragments like C2+, H+, and H2+ that originate from methane dications that are formed by optical field-induced double ionization.  相似文献   

16.
Kr(+) and Xe(+) formation following photodissociation of NO-RG (RG = Kr or Xe) molecules via the ?-X electronic transition in the 44,150-44,350 cm(-1) region has been investigated using velocity map imaging. Nuclear kinetic energy release (nKER) spectra indicate that the NO cofragment is produced in multiple vibrational states of the electronic ground state, with a high degree of rotational excitation. Photofragment angular distributions and nKERs are consistent with photo-induced charge transfer at the two-photon level followed by dissociative ionization at the three-photon level. RG(+) angular distributions showing highly parallel character relative to the laser polarization axis are indicative of a high degree of molecular alignment in the dissociating species.  相似文献   

17.
用波长为800 nm,脉宽为160 fs,强度范围为7.6×1013~1.4×1014 W•cm-2的强激光使甲烷分子解离,并用质谱仪检测产生的离子.母体离子在较低的激光强度(7.6×1013 W•cm-2)下出现;当激光强度增加到8.0×1013 W•cm-2时,开始出现;CH2+、CH+和C+离子出现的阈值分别为1.0×1014 W•cm-2、1.4×1014 W•cm-2和1.4×1014 W•cm-2.这些现象表明甲烷的解离是一个顺序过程.质谱图中没有多电荷离子,因此排除了发生库仑爆炸的可能.以线偏振激光作用于甲烷,只有H+离子有各向异性的角度分布,暗示分子中的化学键是被激光外场拉断的,且初级产物离子H+是沿着激光电场的方向飞出.提出的准双原子分子模型较好地解释了实验结果.  相似文献   

18.
We explore the possibility of controlling rotational-torsional dynamics of non-rigid molecules with strong, non-resonant laser pulses and demonstrate that transient, laser-induced torsional alignment depends on the nuclear spin of the molecule. Consequently, nuclear spin isomers can be manipulated selectively by a sequence of time-delayed laser pulses. We show that two pulses with different polarization directions can induce either overall rotation or internal torsion, depending on the nuclear spin. Nuclear spin selective control of the angular momentum distribution may open new ways to separate and explore nuclear spin isomers of polyatomic molecules.  相似文献   

19.
Regulation of photodissociation dynamics of oriented LiH molecules in different dissociation channels is proposed based on time dependent quantum wave packet theory. The enhancement of molecular orientation on the photodissociation of LiH is obvious with our theoretical scheme. The results show that the molecular orientation in the ground state has a great effect on the angular distributions of wave packets. By using the proper laser pulses and controlling the polarization direction of the laser pulses, the enhancement of the photodissociation could be realized. After the molecular orientation, an optimal dissociation channel is observed with an improved dissociation probability. Compared with the results without molecular orientation, the maximal dissociation probability is increased by 8.1% in the indirect dissociation channel and 30.7% in the direct dissociation channel. The enhancement effect is more obvious in the direct dissociation channel, which provides a possible method to manipulate the dissociation of LiH molecules experimentally. Additionally, the photodissociation process of LiH also relies on the electric intensity and delay time of two pump pulses.  相似文献   

20.
Ionization is the fundamental process in interaction of atoms/molecules with femtosecond strong laser fields. Comparing to atoms, molecules exhibit peculiar behaviors in strong-field ionization because of their diverse geometric structures, molecular electronic orbitals as well as extra nuclear degrees of freedom. In this study, we investigate strong field single and double ionization of carbon monoxide (CO) and carbon dioxide (CO2) in linearly polarized 50-fs, 800-nm laser fields with peak intensity in the range of 2×1013 W/cm2 to 2×1014 W/cm2 using time-of-flight mass spectrometer. By comparing the ionization yields with that of the companion atom krypton (Kr), which has similar ionization potential to the molecules, we investigate the effect of molecular electronic orbitals on the strong-field ionization. The results show that comparing to Kr, no significant suppression is observed in single ionization of both molecules and in non-sequential double ionization (NSDI) of CO, while the NSDI probability of CO2 is strongly suppressed. Based on our results and previous studies on homonuclear diatomic molecules (N2 and O2), the mechanism of different suppression effect is discussed. It is indicated that the different structure of the highest occupied molecular orbitals of CO and CO2 leads to distinct behaviors in two-center interference by the electronic wave-packet and angular distributions of the ionized electrons, resulting in different suppression effect in strong-field ionization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号