首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Treatment of the Schiff base ligands 4-(NC5H4)C6H4C(H)N[2′-(OH)C6H4] (a), 3,5-(N2C4H3)C6H4C(H)N[2′-(OH)-C6H4] (b) and 3,5-(N2C4H3)C6H4C(H) N[2′-(OH)-5′-tBuC6H3] (c) with palladium (II) acetate in toluene gave the poly-nuclear cyclometallated complexes [Pd{4-(NC5H4)C6H3C(H)N[2′-(O)C6H4]}]4 (1a), [Pd{3,5-(N2C4H3)C6H3C(H)N[2′-(O)-C6H4]}]4 (1b) and [Pd{3,5-(N2C4H3)C6H3C(H)N[2′-(O)-5′-tBuC6H3]}]4 (1c) respectively, as air stable solids, with the ligand acting as a terdentate [C,N,O] moiety after deprotonation of the –OH group. Reaction of the cyclometallated complexes with triphenylphosphine gave the mononuclear species [Pd{4-(NC5H4)C6H3C(H) N[2′-(O)C6H4]}(PPh3)], (2a), [Pd{3,5-(N2C4H3)C6H3C(H) N[2′-(O)C6H4]}(PPh3)], (2b) and [Pd{3,5-(N2C4H3)C6H3C(H)N[2′-(O)-5′-tBuC6H3)}(PPh3)], (2c) in which the polynuclear structure has been cleaved and the coordination of the ligand has not changed [C,N,O]. When the cyclometallated complexes 1b and 1c were treated with the diphosphines Ph2P(CH2)4PPh2 (dppb), Ph2PC5H4FeC5H4PPh2 (dppf) and Ph2P(CH2)2PPh2 (t-dppe) in a 1:2 molar ratio the dinuclear cyclometallated complexes [{Pd[3,5-(N2C4H3)C6H3C(H)N{2′-(O)C6H4}]}2(μ-Ph2P(CH2)4PPh2)], (3b), [{Pd[3,5-(N2C4H3)C6H3C(H) N{2′-(O)-5′-tBuC6H3}]}2(μ-Ph2P(CH2)4PPh2)], (3c), [{Pd[3,5-(N2C4H3)C6H3C(H)N{2′-(O)C6H4}]}2(μ-Ph2P(η5-C5H4)Fe(η5-C5H4)PPh2)], (4b), [{Pd[3,5-(N2C4H3)C6H3C(H) N{2′-(O)-5′-tBuC6H3}]}2(μ-Ph2P(η5C5H4)Fe(η5C5H4)P-Ph2)], (4c) and [{Pd[3,5-(N2C4H3)C6H3C(H)N{2′-(O)-5′-tBuC6H3}]}2(μ-Ph2P(CHCH)PPh2)], (5c) were obtained as air stable solids.  相似文献   

2.
The cluster complexes (μ-H)Os3(μ-OCR)(СО)10 (R = Me (1); R = Ph (2)) catalyze the allylic rearrangement of N-allylacetamide at room temperature. Microwave irradiation greatly (by more than several thousand-fold) accelerates the reaction between the solution of 2 and allylacetamide. The interaction of cluster 2 with allylamine both at room and elevated temperatures results in cleavage of the C–N bond and coordination of the allylic fragment to one of the osmium atoms with the formation of Os3(CO)9(μ,η2-OC-Ph)(η3-C3H5) (4) cluster.  相似文献   

3.
The σ-alkynyl complexes Ni(η5-C5H5)(PPh3)-CC-R (1), Ni(η5-C5H5)(PPh3)-CC-X-CCH (2) and Ni(η5-C5H5)(PPh3)-CC-X-CC-Ni(η5-C5H5)(PPh3) (3), reactwith 7,7,8,8-tetracyanoquinodimethane, TCNQ, at 30 °C by insertion of the alkyne CC into a CC(CN)2 bond to give Ni(η5-C5H5)(PPh3)-C{C6H4C(CN)2}-C{C(CN)2}-R (4), from 1, Ni(η5-C5H5)(PPh3)-C{C6H4C(CN)2}-C{C(CN)2}-X-CCH (5), from 2, and Ni(η5-C5H5)(PPh3)-C{C6H4C(CN)2}-C{C(CN)2}-X-CC-Ni(η5-C5H5)(PPh3) (6),and Ni(η5-C5H5)(PPh3)-C{C6H4C(CN)2}- C{C(CN)2}-X-C{C(CN)2}-C{C6H4C(CN)2}-Ni(η5-C5H5)(PPh3) (7),from 3 {R = (a) C6H5, (b) 4-PhC6H4, (c) 4-Me2NC6H4, (d) 1-C10H7 (1-naphthyl), (e) 2-C10H7 (2-naphthyl), (f) 9-C14H9 (9-phenanthryl), (g) 9-C14H9 (9-anthryl), (h) 3-C16H9 (3-pyrenyl), (i) 1-C20H11 (1-perylenyl), (j) 2-C4H3S (2-thienyl), (k) C10H9Fe (ferrocenyl = Fc) and (l) H; X = (a) nothing, (b) 1,4-C6H4, (c) 1,3-C6H4 and (d) 4,4′-C6H4-C6H4}. The reaction is regiospecificand the other possible insertion product, R-C{C6H4C(CN)2}-C{C(CN)2}-Ni(η5-C5H5)(PPh3) etc., is not formed. Under the same conditions, there is no evidencefor the reaction of TCNQ with the -CCH of 2, PhCCH, 1,4-C6H4(CCH)2 or FcCCH, or for the reaction of more than one CC(CN)2 of TCNQ with a Ni-alkynyl moiety. Complexes 4-7 are all air-stable, purple solids which have been characterised by elemental analysis and spectroscopy (IR, UV-Vis, 1H NMR and 13C NMR),and by X-ray diffraction for 4a, 4b and 4l. The UV-Vis spectra of 4-7 are very similar. This implies that all contain the same active chromophore which, it is suggested, is Ni-C(5)C6H4C(CN)2 and not R-C(4)C(CN)2. This isconsistent with the molecular structures of 4a, 4b and 4l which show that the first of these potentially chromophoric fragments is planar or close to it with an in-built potential for delocalisation, whilst in the second the aryl group R is almost orthogonal to the CC(CN)2 plane. The molecular structures of 4a, 4b and 4l also reveal a short Ni?C(4) separation, indicative of a Ni → C(4) donor-acceptor interaction. The electrochemistry of 4a shows aquasi reversible oxidation at ca. 1 V and complicated reduction processes. It is typical of most 4, but 4l is different in that it shows the same quasi reversible oxidation at ca. 1 V but two reversible reductions at −0.26 and −0.47 V (vs. [Fe(η5-C5Me5)2]+/0 0.0 V).  相似文献   

4.
Reaction of the Schiff base ligand derived from 4-pyridinecarboxaldehyde NC5H4C(H)N[2′,4′,6′-(CH3)C6H2], (1), with palladium(II) acetate in toluene at 60 °C for 24 h gave [Pd{NC5H4C(H)N[2′,4′,6′-(CH3)C6H2]}2(OCOCH3)2], (2), with two ligands coordinated through the pyridine nitrogen. Treatment of the Schiff base ligand derived from 4-pyridinecarboxaldehyde N-oxide, 4-(O)NC5H4C(H)N[2′,4′,6′-(CH3)C6H2], (4), with palladium(II) acetate in toluene at 75 °C gave the dinuclear acetato-bridged complex [Pd{4-(O)NC5H3C(H)N[2′,4′,6′-(CH3)C6H2]}(OCOCH3)]2, (5) with metallation of an aromatic phenyl carbon. Reaction of complex 5 with sodium chloride or lithium bromide gave the dinuclear halogen-bridged complexes [Pd{4-(O)NC5H3C(H)N[2′,4′,6′-(CH3)C6H2]}(Cl)]2, (6) and [Pd{4-(O)NC5H3C(H)N[2′,4′,6′-(CH3)C6H2]}(Br)]2, (7), after the metathesis reaction. Reaction of 6 and 7 with triphenylphosphine gave the mononuclear species [Pd{4-(O)NC5H3C(H)N[2′,4′,6′-(CH3)C6H2]}(Cl)(PPh3)], (8) and [Pd{4-(O)NC5H3C(H)N[2′,4′,6′-(CH3)C6H2]}-(Br)(PPh3)], (9), as air stable solids. Treatment of 6 and 7 with Ph2P(CH2)2PPh2 (dppe) in a complex/diphosphine 1:2 molar ratio gave the mononuclear complexes [Pd{4-(O)NC5H3C(H)N[2′,4′,6′-(CH3)C6H2]}(PPh2(CH2)2PPh2)][Cl], (10), and [Pd{4-(O)NC5H3C(H)N[2′,4′,6′-(CH3)C6H2]}(PPh2(CH2)2PPh2)][PF6], (11), with a chelating diphosphine. The molecular structure of complex 9 was determined by X-ray single crystal diffraction analysis.  相似文献   

5.
The study of the reactivity of the ferrocenyliminoalcohol [(η5-C5H5)Fe{(η5-C5H4)-CHN-(C6H4-2OH)}] (1b) with Na2[PdCl4] or Pd(OAc)2 has allowed the isolation and characterization of the heterotrimetallic complexes: trans-[Pd{(η5-C5H5)Fe[(η5-C5H4)-CHN-(C6H4-2OH)]}2Cl2] (2b), [Pd{[(η5-C5H3)-CHN-(C6H4-2O)]Fe(η5-C5H5)}{(η5-C5H5)Fe[(η5-C5H4)-CHN-(C6H4-2OH)]}] (3b) and trans-[Pd{(η5-C5H5)Fe[(η5-C5H4)-CHN-(C6H4-2O)]}2] (4b). Ligand 1b acts as a (N) (in 2b) or a (N,O) (in 4b) ligand; while in 3b the two units of the iminoalcohol exhibit simultaneously different modes of binding {(N) and [C(sp2, ferrocene),N,O]2−}. The crystal structures of 2b · 3H2O and 3b · 1/2CHCl3 are also reported and confirm the mode of binding of the ligand in these compounds. The relative importance of the factors affecting the preferential formation of products (2b-4b) is also discussed. The study of the reactivity of 3b with PPh3 has enabled the obtention of the cyclopalladated complexes [Pd{[(η5-C5H3)-CHN-(C6H4-2O)]Fe(η5- C5H5)}(PPh3)] (6b) and [Pd{[(η5-C5H3)-CHN-(C6H4-2OH)]Fe(η5-C5H5)}Cl(PPh3)] (7b), in which 1b behaves as a [C(sp2, ferrocene),N,O]2− (in 6b) or [C(sp2, ferrocene),N] (in 7b) ligand. Treatment of 3b with MeO2C-CC-CO2Me produces [Pd{[(MeO2C-CC-CO2Me)25-C5H3)-CHN-(C6H4-2O)]Fe(η5-C5H5)}] (8b), that arises from the bis(insertion) of the alkyne into the σ[Pd-C(sp2, ferrocene)] bond. The comparison of the results obtained for 1b and [C6H5-CHN-(C6H4-2OH)] (1a) has allowed to establish the influence of the substituents on the imine carbon on their reactivity in front of palladium(II) as well as on the lability of the Pd-ligands bond. 57Fe Mössbauer studies of 2b-4b and 6b provide conclusive evidence of the effect induced by the mode of binding of 1b on the environment of the iron(II).  相似文献   

6.
The study of the reactivity of the cyclopalladated complex [Pd{[(η5-C5H3)-CHN-(C6H4-2-SMe)]Fe(η5-C5H5)}Cl] (1c) with the alkynes R1-CC-R1 (with R1 = CO2Me, Ph or Et) is reported.Compound 1c reacts with the equimolar amount of MeO2C-CC-CO2Me in refluxing CH2Cl2 to give [Pd{[(MeO2C-CC-CO2Me)(η5-C5H3)-CHN-(C6H4-2-SMe)]Fe(η5-C5H5)}Cl] (2c), which arises from the monoinsertion of the alkyne into the σ[Pd-C(sp2, ferrocene)] bond.However, when the reaction was performed using Ph-CC-Ph or Et-CC-Et no evidence of the insertion of these alkynes into the σ[Pd-C(sp2, ferrocene)] bond was detected.In contrast with these results, when 1c was treated with the Tl[BF4] followed by the removal of the TlCl formed and the subsequent addition of MeO2C-CC-CO2Me the reaction gave 2c and [Pd{[(MeO2C-CC-CO2Me)25-C5H3)-CHN-(C6H4-2-SMe)]Fe(η5-C5H5)}][BF4] (3c); but when the alkyne was R1-CC-R1 (with R1 = Ph or Et), the ionic palladacycles [Pd{[(R1-CC-R1)25-C5H3)-CHN-(C6H4-2-SMe)]Fe(η5-C5H5)}][BF4] · CH2Cl2 [with R1 = Ph (5c) or Et (6c)] were isolated. In compounds 3c, 5c and 6c, the mode of binding of the butadienyl unit is η3. The reactions of 2c, 3c, 5c and 6c with PPh3 are also reported. The results obtained from these studies reveal that the σ(Pd-S) bond in 2c is more prone to cleave than in 4c-6c. X-ray crystal structures of 2c, 5c and [Pd{[(MeO2C-CC-CO2Me)(η5-C5H3)-CHN-(C6H4-2-SMe)]Fe(η5-C5H5)}Cl(PPh3)] (7c), are also described. Compound 7c arises from 2c by cleavage of the Pd-S bond and the incorporation of a PPh3 in the coordination sphere of the palladium. A parallel study focused on the reactions of [Pd{[2-CH2-4,6-Me2-C6H2]-CHN-(C6H4-2-SMe)}Cl] (1d) (with a [Csp3,N,S] terdentate group) with the three alkynes reveals that the σPd-C(sp2, ferrocene)] bond of 1c is more reactive than the σ[Pd-C(sp3)] bond of 1d.  相似文献   

7.
The reactions of the cyclometallated complexes [M{[(η5-C5H3)-CHN-(C6H4-2-SMe)]Fe(η5-C5H5)}Cl] [with M = Pt (5a) or Pd (5b)] with PPh3 under different experimental conditions are reported. These studies have allowed the isolation of [M{[(η5-C5H3)-CHN-C6H4-2-SMe]Fe(η5-C5H5)}(PPh3)]X [M = Pt and X = Cl (6a) or (7a) or M = Pd and X = Cl (6b) or (7b)] and the neutral complex [Pd{[(η5-C5H3)-CHN-(C6H4-2-SMe)]Fe(η5-C5H5)}Cl(PPh3)] (8b). In 6-7a,b the ferrocenyl Schiff base behaves as a [C(sp2, ferrocene),N,S] group while in 8b it acts as a [C(sp2, ferrocene),N] ligand. The X-ray crystal structure of 7b confirms the mode of binding of the ferrocenyl ligand. The comparison of the results obtained and those reported for [M{(C6H4)-CHN-(CH2-CH2-2-SEt)}Cl] and [M{(C6H4)-CHN-(C6H4-2-SMe)}Cl] {with a [C(sp2, phenyl),N,S] terdentate ligand} or [M{[(η5-C5H3)-CHN-(CH2)3-NMe2]Fe(η5-C5H5)}Cl] {in which the ligand acts as a [C(sp2, ferrocene),N,N′] group} have allowed the elucidation of the relative importance of the factors affecting the lability of the M-X (X = S or N′) and M-Cl bonds in cyclometallated compounds with [C,N,S] and [C(sp2, ferrocene),N,X] ligands.  相似文献   

8.
A new ferrocenylnaphthoxazole [(η5-C5H5)Fe{(η5-C5H4)C(O)N(C10H6)}] (1) was synthesized under mild conditions. Two mercurated derivatives: ortho-mercurated product [HgCl{(η5-C5H5)Fe[(η5-C5H3)C(O)N(C10H6)]}] (2) and the product mercurated on the unsubstituted Cp ring [HgCl{(η5-C5H4)Fe[(η5-C5H4)C(O)N(C10H6)]}] (3) were obtained by the reaction of 1 with mercuric acetate. All the new compounds 1, 2 and 3 were characterized by elemental analyses, IR, NMR, MS spectra and X-ray crystal structure analysis. The crystal structure of 1 extended into a 2D supramolecular network through the intermolecular π-π stacking interaction between the Cp ring and naphthoxazole ring. In the crystal of 2, there exist bridged Cl-Hg bonds, CH(Cp) ? Cl and CH? Hg hydrogen bonds, π-π stacking interactions, which facilitate construction of this complex into a 3D supramolecular structure.  相似文献   

9.
Two new phenol based macroacyclic Schiff base ligands, 2,6-bis({N-[2-(phenylselenato)ethyl]}benzimidoyl)-4-methylphenol (bpebmpH, 1) and 2,6-bis({N-[3-(phenylselenato)propyl]}benzimidoyl)-4-methylphenol (bppbmpH, 2) of the Se2N2O type have been prepared by the condensation of 4-methyl-2,6-dibenzoylphenol (mdbpH) with the appropriate (for specific reactions) phenylselenato(alkyl)amine. These ligands with Cu(II) acetate monohydrate in a 2:1 molar ratio in methanol form complexes of the composition [(C6H2(O)(CH3){(C6H5)CN(CH2)nSe(C6H5)}{(C6H5)CO}2Cu] (3 (n = 2), 4 (n = 3)) with the loss of phenylselenato(alkyl)amine and acetic acid. In both these complexes, one arm of the ligand molecule undergoes hydrolysis, and links with Cu(II) in a bidentate (NO) fashion, as confirmed by single crystal X-ray crystallography of complex 3. The selenium atoms do not form part of the copper(II) distorted square planar coordination sphere which has a trans-CuN2O2 core. The average Cu–N and Cu–O distances are, respectively, 1.973(3) and 1.898(2) Å. The N–Cu–N and O–Cu–O angles are, respectively, 167.4(11)° and 164.5(12)°. The compounds 1–4 have been characterized by elemental analysis, conductivity measurements, mass spectrometry, IR, electronic, 1H and 77Se{1H} NMR spectroscopy and cyclic voltammetry. The interaction of complex 3 with calf thymus DNA has been investigated by a spectrophotometric method and cyclic voltammetry.  相似文献   

10.
Kai-Min Wu 《Tetrahedron》2005,61(41):9679-9687
Three pendant benzamidines [Ph-C(NC6H5)-{NH(CH2)2NMe2}] (1), [Ph-C(NC6H5)-{NH(CH2Py)}] (2) and [Ph-C(NC6H5)-{NH(o-C6H4)(oxazoline)}] (3) are described. Reactions of 1, 2 or 3 with one molar equivalent of Pd(OAc)2 in THF give the palladacyclic complexes [Ph-C{-NH(η1-C6H4)}{N(CH2)2NMe2}]Pd(OAc) (4), [Ph-C{-NH(η1-C6H4)}{N (CH2Py)}]Pd(OAc) (5) and [Ph-C{-NH(η1-C6H4)}{N(o-C6H4)(oxazoline)}]Pd(OAc) (6), respectively. Treatment of 4, 5 or 6 with excess of LiCl in chloroform affords [Ph-C{-NH(η1-C6H4)}{N(CH2)2NMe2}]PdCl (7), [Ph-C{-NH(η1-C6H4)}{N(CH2Py)}]PdCl (8) and [Ph-C{-NH(η1-C6H4)}{N(o-C6H4)(oxazoline)}]PdCl (9). The crystal and molecular structures are reported for compounds 1, 3, 5, 6 and 7. The application of these palladacyclic complexes to the Suzuki and Heck coupling reactions was examined.  相似文献   

11.
Rigid-rod structured homobimetallic palladium complexes of type [{trans-(Me(O)CS-4-C6H4-C6H4)(Ph3P)2Pd}2(μ-NN)](OTf)2 (8a, μ-NN = 4,4′-bipyridine, bpy; 8b, μ-NN = C5H4N-CHN-NCH-C5H4N; 8c, μ-NN = C5H4N-CHCH-C6H4-CHCH-C5H4N; 8d, μ-NN = C5H4N-CHN-C6H4-NCH-C5H4N) were synthesized by the reaction of trans-[(Me(O)CS-4-C6H4-C6H4)(Ph3P)2Pd](OTf) (6) with 0.5 equivalents of NN (7a, NN = bpy; 7b, NN = C5H4N-CHN-NCH-C5H4N; 7c, NN = C5H4N-CHCH-C6H4-CHCH-C5H4N; 7d, NN = C5H4N-CHN-C6H4-NCH-C5H4N) in high yield. Complex 6 was accessible by the subsequent reaction of I-4-C6H4-C6H4-4′-SC(O)Me (2) with [(PPh3)4Pd] (3) to produce trans-[(I)(Me(O)CS-4-C6H4-C6H4)(Ph3P)2Pd] (4) which further reacted with AgOTf (5) to give 6.The structures of 4 and 8c in the solid state are reported. Most characteristic for these systems is the square-planer coordination geometry of palladium with trans-positioned PPh3 groups. This automatically positions the iodo ligand and the Me(O)CS-4-C6H4-C6H4 unit (complex 4) or the nitrogen donor atoms of the C5H4N-CHCH-C6H4-CHCH-C5H4N connectivity and the thio-acetyl group Me(O)CS-C6H4-C6H4 (complex 8c) trans to each other. In 8c a Pd-Pd separation of 20.156 Å is typical.The electrochemical redox behavior of 2, 4 and 8 is discussed.  相似文献   

12.
The synthesis and characterization of pyrazole derivatives of general formula [C6H4-4-R-1-{(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)}] [R = OMe (1a) or H (1b)] with a ferrocenylmethyl substituent are described.The study of the reactivity of compounds 1 with palladium(II) acetate has allowed the isolation of complexes (μ-AcO)2[Pd{κ2-C,N-C6H3-4-R-1-[(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)]}]2 (2) [R = OMe (2a) or H (2b)] that contain a bidentate [C(sp2, phenyl), N] ligand and a central “Pd(μ-AcO)2Pd” unit.Furthermore, treatment of 2 with LiCl produced complexes (μ-Cl)2[Pd{κ2-C,N-C6H3-4-R-1-[(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)]}]2 (3) [R = OMe (3a) or H (3b)] that arise from the replacement of the acetato ligands by the Cl.Compounds 2 and 3 also react with PPh3 giving the monomeric complexes [Pd{κ2-C,N-C6H3-4-R-1-[(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)]}X(PPh3)] {X = AcO and R = OMe (5a) or H (5b) or X = Cl and R = OMe (6a) or H (6b)}, where the phosphine is in a cis-arrangement to the metallated carbon atom. Treatment of 3 with thallium(I) acetylacetonate produced [Pd{κ2-C,N-C6H3-4-R-1-[(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)]}(acac)] (7) [R = OMe (7a) or H (7b)]. Electrochemical studies of the free ligands and the cyclopalladated complexes are also reported. The dimeric complexes 3 also react with MeO2C-CC-CO2Me (in a 1:4 molar ratio) giving [Pd{(MeO2C-CC-CO2Me)2C6H3-4-R-1-[(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)]}Cl] (8) [R = OMe (8a) or H (8b)], which arise from the bis(insertion) of the alkyne into the σ{Pd-C(sp2, phenyl)} bond of 3.  相似文献   

13.
Selective formation of (η3-siloxyallyl)tungsten complexes by reaction of hydrido(hydrosilylene)tungsten complexes with α,β-unsaturated carbonyl compounds was reported experimentally. The mechanisms have been investigated by employing the model reaction of [Cp(CO)2(H)WSi(H)–{C(SiH3)3}] (R), derived from the original experimental complex Cp′(CO)2(H)WSi(H)–[C(SiMe3)3] (1a, Cp′ = Cp*; 1b, Cp′ = η5-C5Me4Et), with methyl vinyl ketone, under the aid of the density functional calculations at the b3lyp level of theory. It is theoretically predicted that the route involving migration of the hydride to silicon to afford a 16e intermediate [Cp(CO)2W–SiH2–{C(SiH3)3}] is inaccessible (route 2), supporting the proposition by experiments. Another route, via [2 + 4] cycloaddition followed by directly Si–H reductive elimination, is theoretically predicted to be accessible (route 1). In route 1, two possible paths with different attacking directions of the oxygen of methyl vinyl ketone at Si (WSi) are put forward. The attack at the Si atom from the hydride (H1) side of the plane W–Si–H1 in R is found to be preferred kinetically. The regioselectivity for formation of (η3-siloxyallyl)tungsten complexes, where only the exo-anti isomer was obtained, is discussed based on the consideration of thermodynamics and kinetics.  相似文献   

14.
15.
A study of the reactivity of enantiopure ferrocenylimine (SC)-[FcCHN-CH(Me)(Ph)] {Fc =  (η5-C5H5)Fe{(η5-C5H4)-} (1a) with palladium(II)-allyl complexes [Pd(η3-1R1,3R2-C3H3)(μ-Cl)]2 {R1 = H and R2 = H (2), Ph (3) or R1 = R2 = Ph (4)} is reported. Treatment of 1a with 2 or 3 {in a molar ratio Pd(II):1a = 1} in CH2Cl2 at 298 K produced [Pd(η3-3R2-C3H4){FcCHN-CH(Me)(Ph)}Cl] {R2 = H (5a) or Ph (6a)}. When the reaction was carried out under identical experimental conditions using complex 4 as starting material no evidence for the formation of [Pd(η3-1,3-Ph2-C3H3){FcCHN-CH(Me)(Ph)}Cl] (7a) was found. Additional studies on the reactivity of (SC)-[FcCHN-CH(R3)(CH2OH)] {R3 = Me (1b) or CHMe2 (1c)} with complex 4 showed the importance of the bulk of the substituents on the palladium(II) allyl-complex (2-4) or on the ferrocenylimines (1) in this type of reaction. The crystal structure of 5a showed that: (a) the ferrocenylimine adopts an anti-(E) conformation and behaves as an N-donor ligand, (b) the chloride is in acis-arrangement to the nitrogen and (c) the allyl group binds to the palladium(II) in a η3-fashion. Solution NMR studies of 5a and 6a and [Pd(η3-1,3-Ph2-C3H3){FcCHN-CH(Me)(CH2OH)}Cl] (7b) revealed the coexistence of several isomers in solution. The stoichiometric reaction between 6a and sodium diethyl 2-methylmalonate reveals that the formation of the achiral linear trans-(E) isomer of Ph-CHCH-CH2Nu (8) was preferred over the branched derivative (9). A comparative study of the potential utility of ligand 1a, complex 5a and the amine (SC)-H2N-CH(Me)(Ph) (11) as catalysts in the allylic alkylation of (E)-3-phenyl-2-propenyl (cinnamyl) acetate with the nucleophile diethyl 2-methylmalonate (Nu) is reported.  相似文献   

16.
A comparative study of the electrochemical properties, 57Fe NMR and Mössbauer spectroscopic data of compounds [(η5-C5H5)Fe{(η5-C5H4)-C(R1)N-R2}] {R1 = H, R2 = CH2-CH2OH (1a), CH(Me)-CH2OH (1b), CH2C6H5 (1c), C6H4-2Me (1d), C6H4-2SMe (1e) or C6H4-2OH (1f) and R1 = C6H5, R2 = C6H4-2Me (2d)} is reported. The X-ray crystal structure of [(η5-C5H5)Fe{(η5-C5H4)-CHN-C6H4-2OH}] (1f) is also described. Density functional theoretical (DFT) studies of these systems have allowed us to examine the effects induced by the substituents of the “-C(R1)N-R2” moiety or the aryl rings (in 1d-1f) upon the electronic environment of the iron(II) centre.  相似文献   

17.
Binuclear cycloheptatrienylchromium carbonyls of the type (C7H7)2Cr2(CO)n (n = 6, 5, 4, 3, 2, 1, 0) have been investigated by density functional theory. Energetically competitive structures with fully bonded heptahapto η7-C7H7 rings are not found for (C7H7)2Cr2(CO)n structures having two or more carbonyl groups. This result stands in contrast to the related (CnHn)2M2(CO)n (M = Mn, n = 6; M = Fe, n = 5; M = Co, n = 4) systems. Most of the predicted (C7H7)2Cr2(CO)n structures have bent trihapto or pentahapto C7H7 rings and CrCr distances in the range 2.4–2.5 Å suggesting formal triple bonds. In some cases rearrangement of the heptagonal C7H7 ring to a tridentate cyclopropyldivinyl or tridentate bis(carbene)alkyl ligand is observed. In addition structures with CO insertion into the C7H7–Cr bond are predicted for (C7H7)2Cr2(CO)n (n = 6, 4, 2). The global minima found for the (C7H7)2Cr2(CO)n derivatives for n = 6, 5, and 4 are (η5-C7H7)(OC)2CrCr(CO)41-C7H7), (η3-C7H7)(OC)2CrCr(CO)32,1- C7H7), and (η5-C7H7)2Cr2(CO)4, respectively. The global minima for (C7H7)2Cr2(CO)n (n = 3, 2) have rearranged C7H7 groups. Singlet and triplet structures with heptahapto η7-C7H7 rings are found for the dimetallocenes (η7-C7H7)2Cr2(CO) and (η7-C7H7)2Cr2, with the singlet structures being of much lower energies in both cases.  相似文献   

18.
Treatment of a N-arylanilido-imine ligand [ortho-C6H4(NHAr)CHN]2CH2CH2 (Ar = 2,6-Me2C6H3) (LH2) with one equiv. of AlMe3 affords a monometallic complex [C6H4(NHAr)–CHN)]CH2CH2(C6H4(NAr)CHNAlMe2) (1). The monometallic complex 1 reacts with one equiv. of ZnEt2 to give a heterobimetallic complex [C6H4(NAr)–CHNZnEt]CH2CH2[C6H4(NAr)–CHNAlMe2] (2). Both complexes were characterized by 1H and 13C NMR spectroscopy and elemental analyses, and the molecular structures of 1 and 2 were determined by X-ray diffraction analysis. The complexes 1 and 2 both are efficient catalysts for ring-opening polymerization of ε-caprolactone in the presence of benzyl alcohol yielding polymers with narrow polydispersity values and complex 2 initiates the polymerization in a controllable manner.  相似文献   

19.
RSeCCPh (1a, R = Et; 1b, R = n-Bu; 1c, R = Ph; 1d, R = 2,4,6-Me3C6H2) reacts with equimolar amounts of Fe2(CO)9 (2) to give [(μ-SeR)(μ-σ,π-CCPh)]Fe2(CO)6 (3a, R = Et; 3b, R = n-Bu; 3c, R = Ph; 3d, R = 2,4,6-Me3C6H2).Complexes 3a-3d exist as two isomers, depending on the axial or equatorial position of R at selenium.Addition of P(OiC3H7)3 (4) to 3d affords {(μ-Se-2,4,6-Me3C6H2)[μ-η1-CCPh(P(OiC3H7)3)]}Fe2(CO)6 (5) along with {(μ-Se-2,4,6-Me3C6H2)[μ-η11-PhCC(P(OiC3H7)3)]}Fe2(CO)6 (6).The solid-state structures of 3d, 5 and 6 were determined by single X-ray structure analysis.In mononuclear 3d the Fe(CO)3 fragments are bridged by a μ-Se-2,4,6-Me3C6H2 and a μ-σ,π-CCPh unit, resulting in an over-all butterfly arrangement.Due to steric reasons, the mesityl group is pointing away from the PhCC entity and hence, is located in an equatorial position.Compounds 5 and 6, which co-crystallise in the ratio of 7:93, feature aμ-bridging 2,4,6-Me3C6H2Se unit and either a vinylidenic CCPh(P(OiC3H7)3) (complex 5) or a olefinic PhCC(P(OiC3H7)3) (complex 6) building block of which the latter entity is part of a diiron cyclobutene ring.  相似文献   

20.
The reaction of [1,4-{SiMe3(H)N}2C6Me4] (1) with 2 equivalents of LiBun followed by the addition of SiMe3Cl gave the diamine compound [1,4-{(SiMe3)2N}2C6Me4] (2). [Ta(η5-C5H4SiMe3)Cl4] reacts with 2, in a 2:1 stoichiometric ratio, to initially yield a mixture of the dinuclear, [{Ta(η5-C5H4SiMe3)Cl2}2(μ-1,4-NC6Me4N)] (3), and mononuclear, [Ta(η5-C5H4SiMe3)Cl2{NC6Me4-4-(N(SiMe3)2)}] (4), imido complexes. 3 can be obtained exclusively by submitting the reaction mixture to repeated cycles of evacuation, to remove volatiles, followed by addition of solvent and subsequent heating. The mononuclear imido complex 4 was isolated from the reaction of [Ta(η5-C5H4SiMe3)Cl4] with 2 in a 1:1 stoichiometric ratio. The molecular structure of 4 was determined by X-ray diffraction studies. [TaCl3(CH3CN)2{NC6Me4-4-(N(SiMe3)2)}] (5) has been prepared by the reaction of one molar equivalent of TaCl5 with 2 in a CH3CN/CH2Cl2 solvent mixture. The synthesis of the niobium complexes, [{Nb(η5-C5H4SiMe3)Cl2}2(μ-1,4-NC6Me4N)] (6) and [Nb(η5-C5H4SiMe3)Cl2{NC6Me4-4-(N(SiMe3)2)}] (7), was achieved in a similar manner to their tantalum analogues. The reactivity of 7 towards nucleophilic reagents, namely lithium benzamidinate, lithium (trimethylsilyl)cyclopentadienyl or lithium dimethylamide, has been studied and the following compounds prepared:[Nb(η5-C5H4SiMe3)RCl{NC6Me4-4-(N(SiMe3)2)}] (R = η5-C5H4SiMe3 (8), PhC(NSiMe3)2 (9), NMe2 (10)). In an attempt to form the hetero bimetallic complex, [{Nb(η5-C5H4SiMe3)Cl2}(μ-1,4-NC6Me4N){Ta(η5-C5H4SiMe3)Cl2}] (11), the reaction of 7 with [Ta(η5-C5H4SiMe3)Cl4] has been studied. Analysis of the reaction products showed that 11 may exist in equilibrium with the homo bimetallic complexes 3 and 6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号