首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The ortho-metalated complex [Pd(x){κ 2 (C,N)-[C6H4CH2NRR′ (Y)}] (2a4a and 2b3b) was prepared by refluxing in benzene equimolecular amounts of Pd(OAc)2 and secondary benzylamine [a, EtNHCH2Ph; b, t-BuNHCH2Ph followed by addition of excess NaCl. The reaction of the complexes [Pd(x){κ 2 (C,N)-[C6H4CH2NRR′ (Y)}] (2a4a and 2b3b) with a stoichiometric amount of Ph3P=C(H)COC6H4-4-Z (Z = Br, Ph) (ZBPPY) (1:1 molar ratio), in THF at low temperature, gives the cationic derivatives [Pd(OC(Z-4-C6H4C=CHPPh3){κ 2 (C,N)-[C6H4CH2NRR′(Y)}] (5a9a, 4b6b, and 4b′6b′), in which the ylide ligand is O-coordinated to the Pd(II) center and trans to the ortho-metalated C(6)H(4) group, in an “end-on carbonyl”. Ortho-metallation, ylide O-coordination, and C-coordination in complexes (5a9a, 4b6b, and 4b′6b′) were characterized by elemental analysis as well as various spectroscopic techniques.  相似文献   

2.
A new bifunctional N-thiophosphorylated thiourea and 2,5-dithiobiurea of the common formula R[C(S)NHP(S)(OiPr)2]2 [R = –N(Ph)CH2CH2N(Ph)– (H2La); –NHNH– (H2Lb)] have been synthesized and characterized by IR, 1H, 31P spectroscopy and the single crystal X-ray diffraction method. The structure of the latter compound in CDCl3 and acetone-d6 solutions has been discussed in comparison with the monofunctional thiosemicarbazide PhNHNHC(S)NHP(S)(OiPr)2 (HLc).  相似文献   

3.
Reactions of an amino derivative of the closo-decaborate anion [1-B10H9NH3] with aromatic aldehydes afforded Schiff bases [1-B10H9NH=CHAr] (Ar=Ph, C6H4-2-OMe, or C6H4-4-NHCOMe). The reduction of the latter with sodium borohydride gave the corresponding benzylamino derivatives [1-B10H9NH2CH2Ar].Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 2004–2007, September, 2004.  相似文献   

4.
The novel 18-metallacrown-6 complex, with the formula of [Mn6(C11H11N2O3)6(CH3CH2OH)6]·3C3H7NO·2CH3CH2OH (1) (pmshz = N-propanoyl-3-methyl-salicylhydrazide), has been prepared and characterized. The self-assembled, manganese complex assumes a nearly planar cyclic structure with an [Mn–N–N]6 backbone. Due to the coordination, the ligand enforces the stereochemistry of the Mn3+ ions as a propeller shape with alternating …ΔΛΔΛ… configurations. The magnetic properties of the metallacrown molecule are characterized by a weak antiferromagnetic exchange interaction between the Mn3+ ion spins with S = 2 in the cyclic system.  相似文献   

5.
The complex [Pd(O,N,C‐L)(OAc)], in which L is a monoanionic pincer ligand derived from 2,6‐diacetylpyridine, reacts with 2‐iodobenzoic acid at room temperature to afford the very stable pair of PdIV complexes (OC‐6‐54)‐ and (OC‐6‐26)‐[Pd(O,N,C‐L)(O,C‐C6H4CO2‐2)I] (1.5:1 molar ratio, at ?55 °C). These complexes and the PdII species [Pd(O,N,C‐L)(OX)] and [Pd(O,N,C‐L′)(NCMe)]ClO4, (X=MeC(O) or ClO3, L′=another monoanionic pincer ligand derived from 2,6‐diacetylpyridine), are precatalysts for the arylation of CH2?CHR (R?CO2Me, CO2Et, Ph) using IC6H4CO2H‐2 and AgClO4. These catalytic reactions have been studied and a tentative mechanism is proposed. The presence of two PdIV complexes was detected by ESI(+)‐MS during the catalytic process. All the data obtained strongly support a PdII/PdIV catalytic cycle.  相似文献   

6.
Treatment of N-(2-chlorobenzylidene)-N,N-dimethyl-1,3-propanediamine (1) and N-(2-bromo-3,4-(MeO)2-benzylidene)-N,N-dimethyl-1,3-propanediamine (20) with tris(dibenzylideneacetone)dipalladium(0) in toluene gave the mononuclear cyclometallated complexes [Pd{C6H4C(H)=NCH2CH2CH2NMe2}(Cl)] (2) and [Pd{3,4-(MeO)2C6H2C(H)=NCH2CH2CH2NMe2}(Br)] (21), respectively, via oxidative addition reaction with the ligand as a C,N,N terdentate ligand. Reaction of 2 with sodium bromide or iodide in an acetone–water mixture gave the cyclometallated analogues of 2, [Pd{C6H4C(H)=NCH2CH2CH2NMe2}(Br)] (3) and [Pd{C6H4C(H)=NCH2CH2CH2NMe2}(I)] (4), by halogen exchange. The X-ray crystal structures of 2, 3 and 4 were determined and discussed. Treatment of 2, 3, 4 and 21 with tertiary monophosphines in acetone gave the mononuclear cyclometallated complexes [Pd{C6H4C(H)=NCH2CH2CH2NMe2}(L)(X)] (6: L=PPh3, X=Cl; 7: L=PPh3, X=Br; 8: L=PPh3, X=I; 9: L=PMePh2, X=Cl; 10: L=PMe2Ph, X=Cl) and [Pd{3,4-(MeO)2C6H2C(H)=NCH2CH2CH2NMe2}(L)(Br)] (22: L=PPh3; 23: L=PMePh2; 24: L=PMe2Ph). A fluxional behaviour due to an uncoordinated CH2CH2CH2NMe2 could be determined by variable temperature NMR spectroscopy. Treatment of 2, 3 and 4 with silver trifluoromethanesulfonate followed by reaction with triphenylphosphine gave the mononuclear complex [Pd{C6H4C(H)=NCH2CH2CH2NMe2}(PPh3)][F3CSO3] (11) where the Pd–NMe2 bond was retained. Reaction of 2, 3 and 4 with ditertiary diphosphines in a cyclometallated complex–diphosphine 2:1 molar ratio gave the binuclear complexes [{Pd[C6H4C(H)=NCH2CH2CH2NMe2](X)}2(μ-L–L)][L–L=PPh2(CH2)4PPh2(dppb) (13, X=Cl; 14, X=Br; 15, X=I; L–L=PPh2(CH2)5PPh2(dpppe): 16, X=Cl; 17, X=Br; 18, X=I) with palladium–NMe2 bond cleavage. Treatment of 2, 3 and 4 with ditertiary diphosphines, in a cyclometallated complex–diphosphine 2:1, molar ratio and AgSO3CF3 gave the binuclear cyclometallated complexes [{Pd[C6H4C(H)=NCH2CH2CH2NMe2]}2(μ-L–L)][F3CSO3]2 (11: L–L=PPh2(CH2)4PPh2(dppb), X=Cl; 12: L–L=PPh2(CH2)5PPh2 (dpppe), X=Cl). Reaction of 2 with the ditertiary diphosphine cis-dppe in a cyclometallated complex–diphosphine 1:1 molar ratio followed by treatment with sodium perchlorate gave the mononuclear cyclometallated complex [Pd{C6H4C(H)=NCH2CH2CH2NMe2}(cis-PPh2CH=CHPPh2–P,P)][ClO4] (19).  相似文献   

7.
The aminoalcohols 1-HOCR2-2-NMe2C6H4 [R = Ph (1), R = C6H11 (2)] and 1-HOCPh2CH2-2-NMe2C6H4 (3) react with ZnCl2 in tetrahydrofuran to give the alcohol adducts [ZnCl2(THF){1-HOCR2-2-NMe2C6H4}] [R = Ph (4), R = C6H11 (5)] and [ZnCl2(THF){1-HOCPh2CH2-2-NMe2C6H4}] (6). The complexes 46 were characterized by 1H and 13C NMR spectroscopy, and 5 was also structurally characterized by X-ray crystallography.  相似文献   

8.
Half-titanocene is well-known as an excellent catalyst for the preparation of SPS (syndiotactic polystyrene) when activated with methylaluminoxane (MAO). Dinuclear half-sandwich complexes of titanium bearing a xylene bridge, (TiCl2L)2{(μ-η5, η5-C5H4-ortho-(CH2–C6H4–CH2)C5H4}, (4 (L = Cl), 7 (L = O-2,6-iPr2C6H3)) and (TiCl2L)2{(μ-η5, η5-C5H4-meta-(CH2–C6H4–CH2)C5H4} (5 (L = Cl), 8(L = O-2,6-iPr2C6H3)), have been successfully synthesized and introduced for styrene polymerization. The catalysts were characterized by 1H- and 13C NMR, and elemental analysis. These catalysts were found to be effective in forming SPS in combination with MAO. The activities of the catalysts with rigid ortho- and meta-xylene bridges were higher than those of catalysts with flexible pentamethylene bridges. The catalytic activity of four dinuclear half-titanocenes increased in the order of 4 < 5 < 7 < 8. This result displays that the meta-xylene bridged catalyst is more active than the ortho-xylene bridged and that the aryloxo group at the titanium center is more effective at promoting catalyst activity compared to the chloride group at the titanium center. Temperature and ratio of [Al]:[Ti] had significant effects on catalytic activity. Polymerizations were conducted at three different temperatures (25, 40, and 70 °C) with variation in the [Al]:[Ti] ratio from 2000 to 4000. It was observed that activity of the catalysts increased with increasing temperature, as well as higher [Al]:[Ti]. Different xylene linkage patterns (ortho and meta) were recognized to be a principal factor leading to the characteristics of the dinuclear catalyst due to its different spatial arrangement, causing dissimilar intramolecular interactions between the two active sites.  相似文献   

9.
Reactions of the platinum(IV) nitrile complexes [PtCl4(RCN)2] (R = Me, CH2Ph, Ph) with 1,2- and 1,4-PhS(=NH)C6H4SPh in CH2Cl2 afforded addition products of sulfimides and coordinated nitriles, viz., the [PtCl4{NH=C(R)N=S(Ph)(C6H4SPh)}2] complexes. The latter were isolated in 75—90% yields and characterized by elemental analysis, positive-ion FAB mass spectrometry, IR spectroscopy, and 1H and 13C1H NMR spectroscopy. The temperature dependence of the 1H NMR spectra of the model [PtCl4{NH=C(R)N=SPh2}2] complexes (R = Me, Et) in CD2Cl2 studied in a temperature range from +40 to -70 °C demonstrated that EZ isomerization of the ligands is a dynamic process in a range from +40 to -10 °C. The activation free energy of this process was calculated.Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1618–1622, August, 2004.  相似文献   

10.
A family of unsymmetrical 1,2‐bis(imino)acenaphthene‐palladium methyl chloride complexes [1‐[2,6‐{(C6H5)2CH}2‐ 4‐{C(CH3)3}‐C6H2N]‐2‐(ArN)C2C10H6]PdMeCl (Ar = 2,6‐Me2Ph Pd1 , 2,6‐Et2Ph Pd2 , 2,6‐iPr2Ph Pd3 , 2,4,6‐Me3Ph Pd4 , 2,6‐Et2‐4‐MePh Pd5 ) have been prepared and fully characterized by 1H/13C NMR, FTIR spectroscopies, and elemental analysis. X‐ray diffraction analysis of Pd2 complex revealed a square planar geometry. Upon activation with methylaluminoxane, all the palladium complexes displayed high activities for norbornene (NBE) homo‐polymerization producing insoluble polymer. For the copolymerization of NBE with ethylene, Pd4 complex exhibited good activities with high incorporation of ethylene (up to 59.2–77.4%) and the resultant copolymer showed high molecular weights as maximum as 150.5 kg mol−1. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 922–930  相似文献   

11.
The reactions of 4-methoxybenzoylmethylenetriphenylphosphorane ylide (MOBPPY), {(Ph)3PCHCOC6H4OMe}, and 4-flourobenzoylmethylenetriphenylphosphorane ylide (FBPPY) with [Pd(C6H4CH2NH22-C-N)ClL] (L = Py, 3-MePy, 4-MePy, or PPh3), in equimolar ratios in CH2Cl2 yield [Pd(C6H4CH2NH22-C-N)L (Ye)]TfO [(L = PPh3, Ye = MOBPPY; L = PPh3, Ye = FBPPY; L = Py, Ye = MOBPPY; or L = 3-MePy, Ye = MOBPPY]. The reaction of MOBPPY with AgOTf (OTf = CF3SO3) in molar ratios (2:1) using dry acetone as solvent gives [Ag(MOBPPY)2]OTf.  相似文献   

12.
The micellization behavior of bis cationic gemini surfactant, N,N′-dihexadecyl-N,N,N′,N′-tetramethyl-1,12-dodecanediammonium dibromide [C16H33N+(CH3)2-(CH2)12-N+(CH3)2C16H33, 2Br] has been studied in binary aqueous mixtures of dimethyl sulfoxide, methanol, 1,4-dioxane, glycerol and ethylene glycol by conductivity and surface tension measurements at 300 K. The critical micellar concentration, degree of micelle ionization (α), surface excess concentration (Гmax), minimum surface area per molecule of surfactant (Amin), Gibbs free energy of micellization (ΔGm°), the surface pressure at cmc (πcmc), and the Gibbs energy of adsorption (ΔGad°) of the gemini surfactant have also been determined. The cmc, α, Amin increases where as (ΔGm°), Гmax, and πcmc decreases with increasing volume percentage of the solvents in the solvent–water binary mixture. The interfacial properties of the gemini surfactant, solute–solute, solvent–solute interactions and the effectiveness of a surface-active molecule in binary solvent systems have been discussed.  相似文献   

13.
The ligands [Ph2P(O)NP(E)Ph2] (E=S I; E=Se II) can readily be complexed to a range of palladium(II) starting materials affording new six-membered Pd–O–P–N–P–E palladacycles. Hence ligand substitution reaction of the chloride complexes [PdCl2(bipy)] (bipy=2,2′-bipyridine), [{Pd(μ-Cl)(L–L)}2] (HL–L=C9H13N or C12H13N), [{Pd(μ-Cl)Cl(PMe2Ph)}2] or [PdCl2(PR3)2] [PR3=PPh3; 2PR3=Ph2PCH2CH2PPh2or cis-Ph2PCH=CHPPh2] with either I (or II) in thf or CH3OH gave [Pd{Ph2P(O)NP(E)Ph2-O,E}(bipy)]PF6, [Pd{Ph2P(O)NP(E)Ph2-O,E}(L–L)], [Pd{Ph2P(O)NP(E)Ph2-O,E}Cl(PMe2Ph)] or [Pd{Ph2P(O)NP(E)Ph2-O,E} (PR3)2]PF6 in good yields. All compounds described have been characterised by a combination of multinuclear NMR [31 P{1 H} and 1 H] and IR spectroscopy and microanalysis. The molecular structures of five complexes containing the selenium ligand II have been determined by single-crystal X-ray crystallography. Three different ring conformations were observed, a pseudo-butterfly, hinge and in the case of all three PR3 complexes, pseudo-boat conformations. Within the Pd–O–P–N–P–Se rings there is evidence for π-electron delocalisation.  相似文献   

14.
Two new phenol based macroacyclic Schiff base ligands, 2,6-bis({N-[2-(phenylselenato)ethyl]}benzimidoyl)-4-methylphenol (bpebmpH, 1) and 2,6-bis({N-[3-(phenylselenato)propyl]}benzimidoyl)-4-methylphenol (bppbmpH, 2) of the Se2N2O type have been prepared by the condensation of 4-methyl-2,6-dibenzoylphenol (mdbpH) with the appropriate (for specific reactions) phenylselenato(alkyl)amine. These ligands with Cu(II) acetate monohydrate in a 2:1 molar ratio in methanol form complexes of the composition [(C6H2(O)(CH3){(C6H5)CN(CH2)nSe(C6H5)}{(C6H5)CO}2Cu] (3 (n = 2), 4 (n = 3)) with the loss of phenylselenato(alkyl)amine and acetic acid. In both these complexes, one arm of the ligand molecule undergoes hydrolysis, and links with Cu(II) in a bidentate (NO) fashion, as confirmed by single crystal X-ray crystallography of complex 3. The selenium atoms do not form part of the copper(II) distorted square planar coordination sphere which has a trans-CuN2O2 core. The average Cu–N and Cu–O distances are, respectively, 1.973(3) and 1.898(2) Å. The N–Cu–N and O–Cu–O angles are, respectively, 167.4(11)° and 164.5(12)°. The compounds 1–4 have been characterized by elemental analysis, conductivity measurements, mass spectrometry, IR, electronic, 1H and 77Se{1H} NMR spectroscopy and cyclic voltammetry. The interaction of complex 3 with calf thymus DNA has been investigated by a spectrophotometric method and cyclic voltammetry.  相似文献   

15.
The reaction of the heteroleptic Nd(III) iodide, [Nd(L′)(N″)(μ-I)] with the potassium salts of primary aryl amides [KN(H)Ar′] or [KN(H)Ar*] affords heteroleptic, structurally characterised, low-coordinate neodymium amides [Nd(L′)(N″)(N(H)Ar′)] and [Nd(L′)(N″)(N(H)Ar*)] cleanly (L′ = t-BuNCH2CH2[C{NC(SiMe3)CHNt-Bu}], N″ = N(SiMe3)2, Ar′ = 2,6-Dipp2C6H3, Dipp = 2,6-Pri2C6H3, Ar* = 2,6-(2,4,6-Pri3C6H2)2C6H3). The potassium terphenyl primary amide [KN(H)Ar*] is readily prepared and isolated, and structurally characterised. Treatment of these primary amide-containing compounds with alkali metal alkyl salts results in ligand exchange to give alkali metal primary amides and intractable heteroleptic Nd(III) alkyl compounds of the form [Nd(L′)(N″)(R)] (R = CH2SiMe3, Me). Attempted deprotonation of the Nd-bound primary amide in [Nd(L′)(N″)(N(H)Ar*)] with the less nucleophilic phosphazene superbase ButNP{NP(NMe2)3}3 resulted in indiscriminate deprotonations of peripheral ligand CH groups.  相似文献   

16.
Unusual chemical transformations such as three‐component combination and ring‐opening of N‐heterocycles or formation of a carbon–carbon double bond through multiple C–H activation were observed in the reactions of TpMe2‐supported yttrium alkyl complexes with aromatic N‐heterocycles. The scorpionate‐anchored yttrium dialkyl complex [TpMe2Y(CH2Ph)2(THF)] reacted with 1‐methylimidazole in 1:2 molar ratio to give a rare hexanuclear 24‐membered rare‐earth metallomacrocyclic compound [TpMe2Y(μN,C‐Im)(η2N,C‐Im)]6 ( 1 ; Im=1‐methylimidazolyl) through two kinds of C–H activations at the C2‐ and C5‐positions of the imidazole ring. However, [TpMe2Y(CH2Ph)2(THF)] reacted with two equivalents of 1‐methylbenzimidazole to afford a C–C coupling/ring‐opening/C–C coupling product [TpMe2Y{η3‐(N,N,N)‐N(CH3)C6H4NHCH?C(Ph)CN(CH3)C6H4NH}] ( 2 ). Further investigations indicated that [TpMe2Y(CH2Ph)2(THF)] reacted with benzothiazole in 1:1 or 1:2 molar ratio to produce a C–C coupling/ring‐opening product {(TpMe2)Y[μ‐η21‐SC6H4N(CH?CHPh)](THF)}2 ( 3 ). Moreover, the mixed TpMe2/Cp yttrium monoalkyl complex [(TpMe2)CpYCH2Ph(THF)] reacted with two equivalents of 1‐methylimidazole in THF at room temperature to afford a trinuclear yttrium complex [TpMe2CpY(μ‐N,C‐Im)]3 ( 5 ), whereas when the above reaction was carried out at 55 °C for two days, two structurally characterized metal complexes [TpMe2Y(Im‐TpMe2)] ( 7 ; Im‐TpMe2=1‐methyl‐imidazolyl‐TpMe2) and [Cp3Y(HIm)] ( 8 ; HIm=1‐methylimidazole) were obtained in 26 and 17 % isolated yields, respectively, accompanied by some unidentified materials. The formation of 7 reveals an uncommon example of construction of a C?C bond through multiple C–H activations.  相似文献   

17.
Summary Reactions of palladium(II) chloride with 2-substituted pyridines (HL), 2-(p-R-C6H4-Y)-C5H4N (R = H, CH3, Cl; Y= NH, NCH3, O, S, CH2) form 12 complexestrans-[PdCl2(HL)2], HL being coordinated through a pyridine-N atom. When the ratio PdCl2/HL = 1/1, the pyridine derivatives with Y = NH are cyclopalladated to form another type of complexes [PdClL]2. In [PdClL]2 the deprotonated ligand L is chelated through pyridine-N and phenylortho-C atoms forming an unusual six-membered palladacycle. Like other cyclopalladated complexes containing a five-membered palladacycle, [PdClL]2 reacts with pyridine (py) to form adducts [PdClL(py)]. [Pd(acac)L] and [Pd(dtc)L] were also prepared and characterized (acac=acetylacetonate and dtc =N,Ndimethyldithiocarbamate ion).  相似文献   

18.
The reaction of dimeric rhodium precursor [Rh(CO)2Cl]2 with two molar equivalent of 1,1,1-tris(diphenylphosphinomethyl)ethane trichalcogenide ligands, [CH3C(CH2P(X)Ph2)3](L), where X = O(a), S(b) and Se(c) affords the complexes of the type [Rh(CO)2Cl(L)] (1a–1c). The complexes 1a–1c have been characterized by elemental analyses, mass spectrometry, IR and NMR (1H, 31P and 13C) spectroscopy and the ligands a–c are structurally determined by single crystal X-ray diffraction. 1a–1c undergo oxidative addition (OA) reactions with different electrophiles such as CH3I, C2H5I and C6H5CH2Cl to give Rh(III) complexes of the types [Rh(CO)(COR)ClXL] {R = –CH3 (2a–2c), –C2H5 (3a–3c); X = I and R = –CH2C6H5 (4a–4c); X = Cl}. Kinetic data for the reaction of a–c with CH3I indicate a first-order reaction. The catalytic activity of 1a–1c for the carbonylation of methanol to acetic acid and its ester is evaluated and a higher turn over number (TON = 1564–1723) is obtained compared to that of the well-known commercial species [Rh(CO)2I2] (TON = 1000) under the reaction conditions: temperature 130 ± 2 °C, pressure 30 ± 2 bar and time 1 h.  相似文献   

19.
Lithiation of O-functionalized alkyl phenyl sulfides PhSCH2CH2CH2OR (R = Me, 1a; i-Pr, 1b; t-Bu, 1c; CPh3, 1d) with n-BuLi/tmeda in n-pentane resulted in the formation of α- and ortho-lithiated compounds [Li{CH(SPh)CH2CH2OR}(tmeda)] (α-2ad) and [Li{o-C6H4SCH2CH2CH2OR)(tmeda)] (o-2ad), respectively, which has been proved by subsequent reaction with n-Bu3SnCl yielding the requisite stannylated γ-OR-functionalized propyl phenyl sulfides n-Bu3SnCH(SPh)CH2CH2OR (α-3ad) and n-Bu3Sn(o-C6H4SCH2CH2CH2OR) (o-3ad). The α/ortho ratios were found to be dependent on the sterical demand of the substituent R. Stannylated alkyl phenyl sulfides α-3ac were found to react with n-BuLi/tmeda and n-BuLi yielding the pure α-lithiated compounds α-2ac and [Li{CH(SPh)CH2CH2OR}] (α-4ab), respectively, as white to yellowish powders. Single-crystal X-ray diffraction analysis of [Li{CH(SPh)CH2CH2Ot-Bu}(tmeda)] (α-2c) exhibited a distorted tetrahedral coordination of lithium having a chelating tmeda ligand and a C,O coordinated organyl ligand. Thus, α-2c is a typical organolithium inner complex.Lithiation of O-functionalized alkyl phenyl sulfones PhSO2CH2CH2CH2OR (R = Me, 5a; i-Pr, 5b; CPh3, 5c) with n-BuLi resulted in the exclusive formation of the α-lithiated products Li[CH(SO2Ph)CH2CH2OR] (6ac) that were found to react with n-Bu3SnCl yielding the requisite α-stannylated compounds n-Bu3SnCH(SO2Ph)CH2CH2OR (7ac). The identities of all lithium and tin compounds have been unambiguously proved by NMR spectroscopy (1H, 13C, 119Sn).  相似文献   

20.
The reactions of salts of the anion [2-B10H9(N≡CMe)] with aliphatic alcohols ROH (R = C n H2n+1 (n = 1–6) CH2CH2(OEt), Pri, Bui, But, i-C5H11) are studied. These reactions result in hydrolytically stable imidates [2-B10H9{NH=C(OR)Me}]. Their structures were confirmed by the data from mass spectrometry, IR, 1H, 11B, and 13C NMR spectroscopy. The molecular geometry of [2(Z)-B10H9{NH=C(OBu)Me}], which formed in nucleophilic addition reaction of n-butyl alcohol to [2-B10H9(N≡CMe)], was established by X-ray diffraction analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号