首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article presents an analytical review of the author’s results and the literature concerning the nature of species resulting from NO and CO adsorption on the unreconstructed (1 × 1) and reconstructed hexagonal (hex) Pt(100) surfaces, including specific features of the reactions between these species. At 300 K, both surfaces adsorb NO and CO mainly in their molecular states. When adsorbed on Pt(100)-1 × 1, the NOads and COads molecules are uniformly distributed on the surface. Under the same conditions, the hexagonal surface undergoes adsorption-induced reconstruction with the formation of NOads/1 × 1 and COads/1 × 1 islands, which are areas of the unreconstructed phase saturated with adsorbed molecules and surrounded with the adsorbate-free hex phase. In adsorption on structurally heterogeneous surfaces containing both hex and 1 × 1 areas, the 1 × 1 and hex phases are occupied in succession, the latter undergoing reconstruction into the 1 × 1 phase. The reaction between NO and CO on the unreconstructed surfaces occurs even at room temperature and results in the formation of N2 and CO2 in quantitative yield. On the hexagonal surface, a stable layer of adsorbed molecules as (NOads + COads)/1 × 1 mixed islands forms under these conditions. Above 350 K, the reaction in the mixed islands is initiated by the desorption of small amounts of the initial compounds, and this is followed by rapid self-acceleration leading to a surface explosion yielding N2, CO2, and N2O (minor product). These products show themselves as very narrow desorption peaks in the temperature-programmed reaction spectrum.  相似文献   

2.
Using in situ STM the atomic structure and the morphology of a Cu(1 1 1) surface exposed to a dilute sulfuric acid solution have been studied depending on the applied electrode potential. At anodic potentials near the onset of copper dissolution the electrode surface is reconstructed (expanded) caused by the specific adsorption of sulfate anions. The extent of the surface reconstruction strongly depends on the sulfate adsorption rate. Fast sulfate adsorption results in a mainly disordered sulfate adlayer on an unreconstructed copper surface. Conversely, slow sulfate adsorption produces a mainly reconstructed copper surface with a highly ordered sulfate/water coadsorption layer. This adsorbate structure shows an additional long-range Moiré modulation, due to a misfit between the first reconstructed and the second unreconstructed copper layer. This is verified by spectroscopy-like STM experiments, which allow the imaging not only of the adsorbate overlayer, but also of the underlying reconstructed substrate. This type of adsorbate-induced reconstruction is characterized by an expansion of the topmost copper layer. The kinetically slow process of reconstruction can be easily followed by dynamic STM measurements revealing a mass transport out of the topmost copper layer during the slow sulfate adlayer formation. Characteristically, new copper islands nucleate and grow, while the sulfate Moiré adlayer expands over the electrode surface. At cathodic electrode potentials the desorption of the sulfate adlayer is accompanied by the lifting of the surface reconstruction and the massive formation of surface defects, such as small pits and vacancy islands. A continuous cycling of the electrode potential leads to an enormous roughening of the surface morphology.  相似文献   

3.
Chemisorption of organosulfur molecules, such as alkanethiols, arenethiols and disulfide compounds on gold surfaces and their subsequent self-organization is the archetypal process for molecular self-assembly on surfaces. Owing to their ease of preparation and high versatility, alkanethiol self-assembled monolayers (SAMs) have been widely studied for potential applications including surface functionalization, molecular motors, molecular electronics, and immobilization of biological molecules. Despite fundamental advances, the dissociative chemistry of the sulfur headgroup on gold leading to the formation of the sulfur–gold anchor bond has remained controversial. This review summarizes the recent progress in the understanding of the geometrical and electronic structure of the anchor bond. Particular attention is drawn to the involvement of gold adatoms at all stages of alkanethiol self-assembly, including the dissociation of the disulfide (S–S) and hydrogen-sulfide (S–H) bonds and subsequent formation of the self-assembled structure. Gold adatom chemistry is proposed here to be a unifying theme that explains various aspects of the alkanethiol self-assembly and reconciles experimental evidence provided by scanning probe microscopy and spectroscopic methods of surface science. While several features of alkanethiol self-assembly have yet to be revisited in light of the new adatom-based models, the successes of alkanethiol SAMs suggest that adatom-mediated surface chemistry may be a viable future approach for the construction of self-assembled monolayers involving molecules which do not contain sulfur.  相似文献   

4.
The favorable position of an adatom and the formation energies of a single vacancy and an adatom‐vacancy pair in three low‐index surfaces of body‐centered cubic (BCC) transition metals have been calculated by using the modified analytical embedded atom method (MAEAM). The favorable position of an adatom is at the fourfold and twofold positions above the (100) and (110) surfaces respectively, but it is deviated from the threefold position of the (111) surface. Either the heights of the adatom from the top atomic layer, or the formation energies of a single vacancy, or an adatom‐vacancy pair decrease in sequence of the (110), (100) and (111) surfaces for each metal. Furthermore, the formation energy of an adatom‐vacancy pair is always lower than that of a single vacancy for each low‐index surface of each metal, which shown the formation of adatom‐vacancy pair is more energetically favorable than the vacancy for the BCC transition metals. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Bis(3-sulfopropyl)disulfide (SPS) is a common additive in commercial copper electroplating baths. We have studied the influence of SPS on Cu underpotential deposition (UPD) on a Au(111) single crystal surface by means of cyclic voltammetry (CV) and electrochemical scanning tunneling microscopy (EC-STM). By combining our results with the results from the literature we propose a model that describes different stages of Cu UPD in the presence of SPS. Further analysis shows that our model is also applicable to a more general case of UPD of different metals, e.g. Cu and Ag, on a thiol-modified single-crystal surface, where the bond between the substrate and the thiol is adatom mediated. In addition, we have verified our model by in situ observation of the lifting of the Herringbone reconstruction on the Au(111) surface by Cu UPD.  相似文献   

6.
The adsorption of atomic oxygen on unreconstructed Pt[100]-(1 x 1) and reconstructed Pt[100]-(5 x 1) was modeled using density-functional theory in an attempt to understand the relative stability of the unreconstructed phase as a function of oxygen coverage. Our calculations showed that at zero temperature the (5 x 1) is more stable than the unreconstructed (1 x 1) phase at zero oxygen coverage. However, oxygen absorption on the Pt[100]-(5 x 1) phase removed the reconstruction, reversing the phase stability. Using thermochemical analysis, we show desorption of oxygen corresponding to a temperature near 730 K, consistent with experimentally observed desorption peaks for oxygen covered (1 x 1) surfaces. These results have ramifications for understanding the full Pt[100](1 x 1)-->Pt[100]hex-R0.7 degrees surface phase transition.  相似文献   

7.
The adsorption of CO on unreconstructed and reconstructed Ir{100} has been studied, using a combination of density functional theory and thermodynamics, to determine the relative stability of the two phases as a function of CO coverage, temperature, and pressure. We obtain good agreement with experimental data. At zero temperature, the (5 x 1) reconstruction becomes less stable than the unreconstructed (1 x 1) surface when the CO coverage exceeds a critical value of 0.09 ML. The interaction between CO molecules is found to be weakly repulsive on the reconstructed surface but attractive on the unreconstructed, explaining the experimental observation of high CO coverage on growing (1 x 1) islands. At all temperatures and pressures, we find only two possible stable states: 0.5 ML CO c(2 x 2) overlayer on the (1 x 1) substrate and the clean (5 x 1) reconstructed surface.  相似文献   

8.
Structural and electronic properties of the λ-MnO(2)(001) surface are investigated applying density functional theory approach. The calculations show that all Mn ions at unreconstructed smooth surface preserve the +4 oxidation state observed in the bulk. Upon the λ-MnO(2)(001) reconstruction, one fourth of Mn ions at the surface undergo a change of the oxidation state from +4 to +3, although the reconstruction does not change the Mn coordination number with oxygen. This is accompanied with the filling of initially empty 3d(z(2) ) states localized on cations with one electron denoted by two neighboring O atoms. Although the reconstruction leads to an energy gain of 0.04 eV per surface unit cell, it is not a spontaneous process since it proceeds with an activation energy of 0.12 eV.  相似文献   

9.
The interaction of ethylene carbonate (EC) with Si surfaces is studied by density functional theory. The results show a strong structure sensitivity in the adsorption of EC on Si surfaces. While the adsorbed EC molecule readily decomposes on the Li/Si(111) surface, it does not dissociate on the Li/Si(100) and Li/Si(110) surfaces. On Si(111), the O atom at the top of EC is detached from the EC molecule and binds to the Li adatom, forming Li?O molecules. The mechanism of EC decomposition is the transfer of 2.4 electrons from the surface to the EC molecule, as well as the formation of a covalent bond between the Li adatom and the EC molecule. This result shows that in lithium‐ion batteries with Si anodes, dissociation of the solvent and formation of a solid electrolyte interphase layer start as soon as the Li atoms cover the anode surface.  相似文献   

10.
Ultrahigh vacuum scanning tunneling microscopy data investigating octylsilane (C8H17SiH3) monolayer pattern formation on Au(111) are presented. The irregular monolayer pattern exhibits a 60 A length scale. Formation of the octylsilane monolayer relaxes the Au(111) 23 x square root3 surface reconstruction and ejects surface Au atoms. Au adatom diffusion epitaxially extends the Au(111) crystal lattice via step edge growth and island formation. The chemisorbed monolayer covers the entire Au surface at saturation exposure. Theoretical and experimental data suggest the presence of two octylsilane molecular adsorption phases: an atop site yielding a pentacoordinate Si atom and a surface vacancy site yielding a tetracoordinate Si atom. Theoretical simulations investigating two-phase monolayer self-assembly dynamics on a solid surface suggest pattern formation results from strain-induced spinodal decomposition of the two adsorption phases. Collectively, the theoretical and experimental data indicate octylsilane monolayer pattern formation is a result of interfacial Au-Si interactions and the alkyl chains play a negligible role in the monolayer pattern formation mechanism.  相似文献   

11.
The surface diffusion and the incorporation of an adatom on early stage of Co/Al (001) interface formation was investigated using the density functional theory (DFT). The energy barrier for the surface diffusion (migration of Co adatom to an adjacent hollow site passing the bridge site) was calculated as 1.01 eV. Large displacement of neighboring Al atoms was accompanied by the surface diffusion of Co adatom. For incorporation process, the energy barrier was 0.39 eV, only 38.6% of the barrier for surface diffusion and the energy gain of the system was 0.43 eV. After the incorporation process was completed, the Co adatom and Al atoms formed seven Co-Al bonds of highly coordinated B2-like configuration.  相似文献   

12.
The early adsorption stage of glycylglycine on Si(111)7×7 surface has been studied by scanning tunneling microscopy (STM). Filled-state imaging shows that glycylglycine adsorbs dissociatively in a bidentate fashion on two adjacent Si adatoms across a dimer wall or an adatom-restatom pair, with the dissociated H atoms on neighboring restatoms. The present STM result validates our hypothesis that both bidentate configurations involving N-H and O-H dissociation and double N-H dissociation are equally probable. Our STM results further show that the relative surface concentrations of the five bidentate configurations follow a specific ordering. This suggests that N-H dissociation at a center adatom site would likely be followed by N-H dissociation at an adjacent restatom, while N-H dissociation at a corner adatom site would be succeeded by O-H dissociation at an adatom across the dimer wall. Evidently, the strong bidentate interactions also inhibit surface diffusion of the adsorbed glycylglycine fragment, and the adsorption apparently follows random sequential adsorption statistics. The random nature of adsorption is also supported by the similar relative occupancies of the center adatom and corner adatom sites, indicating that the relative reactivities of these adatom sites do not play a significant role. Our DFT computational study shows that all three bidentate (Si-)NHCH(2)CONHCH(2)COO(-Si) adatom-adatom configurations (center-center, corner-corner, center-corner) have similar adsorption energies for a double adatom-adatom pair across the dimer wall, while the (Si-)NHCH(2)CON(-Si)CH(2)COOH bidentate adatom-restatom configuration is energetically favorable. The free -CONH- and -COOH groups remaining on the respective bidentate adstructures could facilitate adsorption of the second adlayer through the formation of hydrogen bonding.  相似文献   

13.
The structure of the Ag(111)(radical7x radical7)R19 degrees-CH3S surface phase, formed by interaction of Ag(111) with gas-phase dimethyl disulfide, (CH3S)2, has been investigated by normal-incidence X-ray standing wave (NIXSW) analysis, using (111), (11), and (200) Bragg reflections. The resulting NIXSW structural parameter values clearly exclude any simple overlayer adsorption model on an Ag unreconstructed surface. A reconstructed surface model is proposed that is consistent with the NIXSW measurements and with previous scanning tunneling microscopy results. This comprises a near-hexagonal Ag surface layer with an Ag density of only 3/7 that of the underlying substrate layers; the methanethiolate molecules are adsorbed into 3-fold coordinated hollow sites on this open layer. The results are discussed in the context of the very limited published studies of longer alkyl chain thiolates on Ag(111).  相似文献   

14.
We studied the coverage-dependent self-assembly of the flat-lying phase of ethylthiolate on Au(111). At low coverage, we observed the formation of short stripes of chiral Au-(SC(2)H(5))(2) complexes that arrange in a disordered phase. The latter grow partly at the expense of the native Au(111) surface reconstruction, which is fully lifted for a coverage of ~0.60 ML. We found that the lift of the reconstruction and evaporation from step edges are competing adatom sources. Close to saturation coverage (0.70 to 0.75 ML), large, well-ordered domains with a (8 × √3)rectangular superstructure formed. Alternation of chirality was found in adjacent stripes as already reported for other short alkanethiolates. We suggest that, because of a simple geometrical consideration, the chirality should, on the contrary, be preserved in the stripe phase of longer alkanethiolates.  相似文献   

15.
The effect of hydrogen chemisorption on the strength of Ti-Ti bonds is studied byab initio configuration interaction techniques using an embedding theory to describe the electronic structure. A Ti adatom on Ti(0001) is modelled by a Ti20H cluster with boundary potentials determined from the embedding treatment. Hydrogen atom chemisorption is highly exothermic for adsorption atop the adatom, a three-fold site formed by the adatom and in the interstitial site below the adatom. Compared to the planar Ti(0001) surface the adatom region binds hydrogen much more strongly. Removal of Ti from the surface is energetically much more favorable if H remains on the surface as opposed to the removal of TiH. The exchange reaction Ti20+HTi19H+Ti is endothermic by 0.3 eV. These results suggest high reactivity of the adatom region on Ti(0001) but not such that the surface is more easily fragmented by removal of Ti or TiH.Dedicated to Professor J. Koutecký on the occasion of his 65th birthday  相似文献   

16.
应用原子和表面簇合物相互作用的5参数Morse势方法(简称5-MP)对O-Pt低指数表面体系进行了研究,并获得了全部临界点特性.计算结果表明,氧原子在Pt(100)面上只存在四重吸附态.在缺行重构的(110)面上,氧原子仍吸附于三重位,随着覆盖度的增加还会嵌切吸附于长桥位;通过分析三重态振动指纹性质的遗传和遗变,确认实验观察到的59.49和40.90 meV损失谱分别为氧原子在三重位和长桥位吸附态的表面垂直振动.  相似文献   

17.
A CO stretching frequency analysis is presented for the adsorption of CO on various Au(110) surfaces from density functional theory calculations. The structure sensitivity of the adsorption has been studied by considering the unreconstructed (1 x 1) surface, the missing-row reconstructed (1 x 2) surface, the vicinal stepped (20) surface, and the adsorption on adatoms deposited on the (110)-(1 x 2) surface. The calculated CO stretching frequencies are compared with infrared reflection-absorption spectroscopy (IRAS) measurements carried out at room temperature and pressure below 1 atm. The overall stability of the systems is discussed within the calculations of surface free energies at various coverages. At room temperature, the adsorption of CO on the ridge of the missing-row reconstructed surface competes in the high pressure regime with more complex adsorption structures where the molecule coadsorbs on the ridge and on adatoms located along the empty troughs of the reconstruction. This result is supported by the CO stretching frequency analysis.  相似文献   

18.
We report the structures and energies from first principles density functional calculations of 12 different reconstructed (111) surfaces of silicon, including the 3x3 to 9x9 dimer-adatom-stacking fault (DAS) structures. These calculations used the Perdew-Burke-Ernzerhof generalized gradient approximation of density functional theory and Gaussian basis functions. We considered fully periodic slabs of various thicknesses. We find that the most stable surface is the DAS 7x7 structure, with a surface energy of 1.044 eV/1x1 cell (1310 dyn/cm). To analyze the origins of the stability of these systems and to predict energetics for more complex, less-ordered systems, we develop a model in which the surface energy is partitioned into contributions from seven different types of atom environments. This analysis is used to predict the surface energy of larger DAS structures (including their asymptotic behavior for very large unit cells) and to study the energetics of the sequential size change (SSC) model proposed by Shimada and Tochihara for the observed dynamical reconstruction of the Si(111) 1x1 structure. We obtain an energy barrier at the 2x2 cell size and confirm that the 7x7 regular stage of the SSC model (corresponding to the DAS 7x7 reconstruction) provides the highest energy reduction per unit cell with respect to the unreconstructed Si111 1x1 surface.  相似文献   

19.
On Au(111) electrodes, the investigation of ClO4 adsorption is hampered by a simultaneous surface reconstruction. We demonstrate that these two processes can be decoupled in cyclic voltammograms by a proper choice of the scan rate and of the initial potential. Our approach allowed the establishment of a relation between potentials of zero charge for the reconstructed and unreconstructed Au(111) surfaces.  相似文献   

20.
Periodic density functional calculations have been carried out to investigate both the thiol adsorption on Au(111) surface and the reaction mechanism for the formation of the self-assembled monolayers, taking propanethiol as a representative example. The effect of coverage and surface defects (adatoms and vacancies) has been analyzed. It is found that the most stable physisorption (undissociated) site is an adatom site, whereas the chemisorption site for the thiol is a vacancy site or protrusion consisting of a pair of adatoms, followed by one adatom site. The results point out that the thiolate self-assembled monolayer adsorption process occurs preferentially on step edges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号