首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The perception of fundamental pitch for two-harmonic complex tones was examined in musically experienced listeners with cochlear-based high-frequency hearing loss. Performance in a musical interval identification task was measured as a function of the average rank of the lowest harmonic for both monotic and dichotic presentation of the harmonics at 14 dB Sensation Level. Listeners with hearing loss demonstrated excellent musical interval identification at low fundamental frequencies and low harmonic numbers, but abnormally poor identification at higher fundamental frequencies and higher average ranks. The upper frequency limit of performance in the listeners with hearing loss was similar in both monotic and dichotic conditions. These results suggest that something other than frequency resolution per se limits complex-tone pitch perception in listeners with hearing loss.  相似文献   

2.
This paper describes a neurocognitive model of pitch segregation in which it is proposed that recognition mechanisms initiate early in auditory processing pathways so that long-term memory templates may be employed to segregate and integrate auditory features. In this model neural representations of pitch height are primed by the location and pattern of excitation across auditory filter channels in relation to long-term memory templates for common stimuli. Since waveform driven pitch mechanisms may produce information at multiple frequencies for tonal stimuli, pitch priming was assumed to include competitive inhibition that would allow only one pitch estimation at any time. Consequently concurrent pitch information must be relayed to short-term memory via a parallel mechanism that employs pitch information contained in the long-term memory template of the chord. Pure tones, harmonic complexes and two pitch chords of harmonic complexes were correctly classified by the correlation of templates comprising auditory nerve excitation and off-frequency inhibition with the excitation patterns of stimuli. The model then replicated behavioral data for pitch matching of concurrent vowels. Comparison of model outputs to the behavioral data suggests that inability to recognize a stimulus was associated with poor pitch segregation due to the use of inappropriate pitch priming strategies.  相似文献   

3.
It is unclear whether the perceptual segregation of a mistuned harmonic from a periodic complex tone depends specifically on harmonic relations between the other components. A procedure used previously for harmonic complexes [W. M. Hartmann et al., J. Acoust. Soc. Am. 88, 1712-1724 (1990)] was adapted and extended to regular inharmonic complexes. On each trial, subjects heard a 12-component complex followed by a pure tone in a continuous loop. In experiment 1, a mistuning of +/- 4% was applied to one of the components 2-11. The complex was either harmonic, frequency shifted, or spectrally stretched. Subjects adjusted the pure tone to match the pitch of the mistuned component. Near matches were taken to indicate segregation, and were almost as frequent in the inharmonic conditions as in the harmonic case. Also, small but consistent mismatches, pitch shifts, were found in all conditions. These were similar in direction and size to earlier findings for harmonic complexes. Using a range of mistunings, experiment 2 showed that the segregation of components from regular inharmonic complexes could be sensitive to mistunings of 1.5% or less. These findings are consistent with the proposal that aspects of spectral regularity other than harmonic relations can also influence auditory grouping.  相似文献   

4.
Learning to perceive pitch differences   总被引:2,自引:0,他引:2  
This paper reports two experiments concerning the stimulus specificity of pitch discrimination learning. In experiment 1, listeners were initially trained, during ten sessions (about 11,000 trials), to discriminate a monaural pure tone of 3000 Hz from ipsilateral pure tones with slightly different frequencies. The resulting perceptual learning (improvement in discrimination thresholds) appeared to be frequency-specific since, in subsequent sessions, new learning was observed when the 3000-Hz standard tone was replaced by a standard tone of 1200 Hz, or 6500 Hz. By contrast, a subsequent presentation of the initial tones to the contralateral ear showed that the initial learning was not, or was only weakly, ear-specific. In experiment 2, training in pitch discrimination was initially provided using complex tones that consisted of harmonics 3-7 of a missing fundamental (near 100 Hz for some listeners, 500 Hz for others). Subsequently, the standard complex was replaced by a standard pure tone with a frequency which could be either equal to the standard complex's missing fundamental or remote from it. In the former case, the two standard stimuli were matched in pitch. However, this perceptual relationship did not appear to favor the transfer of learning. Therefore, the results indicated that pitch discrimination learning is, at least to some extent, timbre-specific, and cannot be viewed as a reduction of an internal noise which would affect directly the output of a neural device extracting pitch from both pure tones and complex tones including low-rank harmonics.  相似文献   

5.
Complex tonal whistles are frequently produced by some odontocete species. However, no experimental evidence exists regarding the detection of complex tones or the discrimination of harmonic frequencies by a marine mammal. The objectives of this investigation were to examine the ability of a false killer whale to discriminate pure tones from complex tones and to determine the minimum intensity level of a harmonic tone required for the whale to make the discrimination. The study was conducted with a go/no-go modified staircase procedure. The different stimuli were complex tones with a fundamental frequency of 5 kHz with one to five harmonic frequencies. The results from this complex tone discrimination task demonstrated: (1) that the false killer whale was able to discriminate a 5 kHz pure tone from a complex tone with up to five harmonics, and (2) that discrimination thresholds or minimum intensity levels exist for each harmonic combination measured. These results indicate that both frequency level and harmonic content may have contributed to the false killer whale's discrimination of complex tones.  相似文献   

6.
Most studies of the musical pitch of harmonic tone complexes have utilized signals comparing two or more successive harmonics. The present study provides systematic data on melodic interval recognition by three musically experienced subjects with sounds whose missing fundamentals were represented by two nonsuccessive harmonics nf0,(n + m)f0, delivered to separate ears. Data were obtained in the ranges 1 less than or equal to n less than or equal to 9, 2 less than or equal to m less than or equal to 4, and 200 Hz less than or equal to f0 less than or equal to 1000 Hz. The data are interpreted in the light of three theories, the "optimum processor theory," the "virtual pitch theory," and the "pattern transformation theory." For each theory, a constraint on preformance is proposed based on interference between the "analytic" and "synthetic" pitch perception modes. The former is obtained with large spacings between harmonics, where listeners are more likely to perceive harmonics as individual tones, each having their own pitch. This degrades the listener's ability to hear the fundamental pitch.  相似文献   

7.
Pitch discrimination interference (PDI) refers to an impairment in the ability to discriminate changes in the fundamental frequency (F0) of a target harmonic complex, caused by another harmonic complex (the interferer) presented simultaneously in a remote spectral region. So far, PDI has been demonstrated for target complexes filtered into a higher spectral region than the interferer and containing no peripherally resolved harmonics in their passband. Here, it is shown that PDI also occurs when the target harmonic complex contains resolved harmonics in its passband (experiment 1). PDI was also observed when the target was filtered into a lower spectral region than that of the interferer (experiment 2), revealing that differences in relative harmonic dominance and pitch salience between the simultaneous target and the interferer, as confirmed using pitch matches (experiment 3), do not entirely explain PDI. When the target was in the higher spectral region, and the F0 separation between the target and the interferer was around 7% or 10%, dramatic PDI effects were observed despite the relatively large FO separation between the two sequential targets (14%-20%). Overall, the results suggest that PDI is more general than previously thought, and is not limited to targets consisting only of unresolved harmonics.  相似文献   

8.
Spectral weighting functions were estimated in a pitch-comparison task to assess the relative influence of individual harmonics on listeners' pitch judgment. The stimuli were quasi-harmonic complex tones composed of the first 12 components, with fundamental frequencies ranging from 100 to 800 Hz. On each stimulus presentation the frequency of each harmonic was randomly jittered by a small amount. The perceptual weight for each harmonic was calculated as the correlation coefficient between the binary responses of the listener and the frequency jitters for that harmonic. Although in general the present results conform to previous ones showing the predominant role of several low-ranked harmonics, discrepancies exist in details. Contrary to some previous reports that the dominant harmonics were of fixed harmonic ranks regardless of their frequencies, the current results showed that the dominant harmonics were best described as close to a fixed absolute frequency of 600 Hz.  相似文献   

9.
Perception of the missing fundamental in nonhuman primates   总被引:1,自引:0,他引:1  
In preparation for neurophysiological experiments aimed at mechanisms of pitch perception, four rhesus monkeys were trained to press a button when the fundamental frequencies (missing or present) of two complex tones in a tone pair matched. Both tones were based on a five-component harmonic series. Zero to three of the lowest components could be missing in the first tone, while the second (comparison) tone contained all five harmonics. The range of fundamentals tested varied from 200 to 600 Hz. Three monkeys learned to match tones missing their fundamentals to comparison harmonic complexes with the same pitch, whereas the fourth monkey required the physical presence of the fundamental. Consideration of several cues available to the monkeys suggests that the animals could perceive the missing fundamental.  相似文献   

10.
Piano tones have partials whose frequencies are sharp relative to harmonic values. A listening test was conducted to determine the effect of inharmonicity on pitch for piano tones in the lowest three octaves of a piano. Nine real tones from the lowest three octaves of a piano were analyzed to obtain frequencies, relative amplitudes, and decay rates of their partials. Synthetic inharmonic tones were produced from these results. Synthetic harmonic tones, each with a twelfth of a semitone increase in the fundamental, were also produced. A jury of 21 listeners matched the pitch of each synthetic inharmonic tone to one of the synthetic harmonic tones. The effect of the inharmonicity on pitch was determined from an average of the listeners' results. For the nine synthetic piano tones studied, pitch increase ranged from approximately two and a half semitones at low fundamental frequencies to an eighth of a semitone at higher fundamental frequencies.  相似文献   

11.
When all of the components in a harmonic complex tone are shifted in frequency by delta f, the pitch of the complex shifts roughly in proportion to delta f. For tones with a small number of components, the shift is usually somewhat larger than predicted from pitch theories, which has been attributed to the influence of combination tones [Smoorenburg, J. Acoust. Soc. Am. 48, 924-941 (1970)]. Experiment 1 assessed whether combination tones influence the pitch of complex tones with more than five harmonics, by using noise to mask the combination tones. The matching stimulus was a harmonic complex. Test complexes were bandpass filtered with passbands centered on harmonic numbers 5 (resolved), 11 (intermediate), or 16 (unresolved) and fundamental frequencies (FOs) were 100, 200, or 400 Hz. For the intermediate and unresolved conditions, the matching stimuli were filtered with the same passband to minimize differences in the excitation patterns of the test and matching stimuli. For the resolved condition, the matching stimulus had a passband centered above that of the test stimulus, to avoid common partials. For resolved and intermediate conditions, pitch shifts were observed that could generally be predicted from the frequencies of the partials. The shifts were unaffected by addition of noise to mask combination tones. For the unresolved condition, no pitch shift was observed, which suggests that pitch is not based on temporal fine structure for stimuli containing only high unresolved harmonics. Experiment 2 used three-component complexes resembling those of Schouten [J. Acoust. Soc. Am. 34, 1418-1424 (1962)]. Nominal harmonic numbers were 3, 4, 5 (resolved), 8, 9, 10 (intermediate), or 13, 14, 15 (unresolved) and F0s were 50, 100, 200, or 400 Hz. Clear shifts in the matches were found for all conditions, including unresolved. For the latter, subjects may have matched the "center of gravity" of the excitation patterns of the test and matching stimuli.  相似文献   

12.
This study represents a first step toward understanding the contribution formant frequency makes to the perception of female voice categories. The effects of formant frequency and pitch on the perception of voice category were examined by constructing a perceptual study that used two sets of synthetic stimuli at various pitches throughout the female singing range. The first set was designed to test the effects of systematically varying formants 1 through 4. The second set was designed to test the relative effects of lower frequency formants (F1 and F2) versus higher frequency formants (F3 and F4) through construction of mixed stimuli. Generally, as the frequencies of all four formants decreased, perception of soprano voice category decreased at all but the highest pitch, A5. However, perception of soprano voice category also increased as a function of pitch. Listeners appeared to need agreement between all four formants to perceive voice categories. When upper and lower formants are inconsistent in frequency, listeners were unable to judge voice category, but they could use the inconsistent patterns to form perceptions about degree of jaw opening.  相似文献   

13.
Two experiments investigated the role of the regularity of the frequency spacing of harmonics, as a separate factor from harmonicity, on the perception of the virtual pitch of a harmonic series. The first experiment compared the shifts produced by mistuning the 3rd, 4th, and 5th harmonics in the pitch of two harmonic series: the odd-H and the all-H tones. The odd-H tone contained odd harmonics 1 to 11, plus the 4th harmonic; the all-H tone contained harmonics 1 to 12. Both tones had a fundamental frequency of 155 Hz. Pitch shifts produced by mistuning the 3rd harmonic, but not the 4th and 5th harmonics, were found to be significantly larger for the odd-H tone than for the all-H tone. This finding was consistent with the idea that grouping by spectral regularity affects pitch perception since an odd harmonic made a larger contribution than an adjacent even harmonic to the pitch of the odd-H tone. However, an alternative explanation was that the 3rd mistuned harmonic produced larger pitch shifts within the odd-H tone than the 4th mistuned harmonic because of differences in the partial masking of these harmonics by adjacent harmonics. The second experiment tested these explanations by measuring pitch shifts for a modified all-H tone in which each mistuned odd harmonic was tested in the presence of the 4th harmonic, but in the absence of its other even-numbered neighbor. The results showed that, for all mistuned harmonics, pitch shifts for the modified all-H tone were not significantly different from those for the odd-H tone. These findings suggest that the harmonic relations among frequency components, rather than the regularity of their frequency spacing, is the primary factor for the perception of the virtual pitch of complex sounds.  相似文献   

14.
朱斯语  姬培锋  杨军 《应用声学》2017,36(6):481-489
为了客观地评价民族乐器与西洋乐器在听觉感知方面的差异,本文利用15种典型的中西方乐器声样本,建立了与音色、响度和音色明亮度有关的15种乐器的感知空间模型,通过这些模型可以预测不同乐器在音高、响度一定时,音色明亮度的感知情况。此外,根据已建立的感知空间模型分别对比弹拨乐器、拉弦乐器和不同类型的吹奏乐器中三种听觉感知属性的变化差异。结果表明,对于中西方典型乐器,音色明亮度随响度的增加而增大,但是响度对音色明亮度的影响程度受到音域和响度范围的影响。民族乐器的音色明亮度随音高的增加而增大,但是西洋乐器的音色明亮度并没有随音高的增加而发生明显的变化。  相似文献   

15.
The influence of duration on the virtual pitch of complex tones was measured using an absolute identification paradigm. If performance with two-tone complexes is expressed in terms of a single central frequency-coding noise function, this function is found to depend on duration in about the same way as the pure-tone difference limen function. The function is further found to be a reasonably good predictor of pitch identification performance with multitone complexes. Another experimental finding was that subjects tend to switch to the analytic mode of pitch perception when complex tones are shortened (i.e., they tend to hear the spectral pitches instead of the virtual ones). A third finding was that with simultaneous complex tones the degradation of each pitch percept depends not only on duration and harmonic order of the tone but also on the harmonic order of the other tone.  相似文献   

16.
The ability of absolute-pitch (AP) musicians to identify or produce virtual pitch from harmonic structures without feedback or an external acoustic referent was examined in three experiments. Stimuli consisted of pure tones, missing-fundamental harmonic complexes, or piano notes highpass filtered to remove their fundamental frequency and lower harmonics. Results of Experiment I showed that relative to control (non-AP) musicians, AP subjects easily (>90%) identified pitch of harmonic complexes in a 12-alternative forced-choice task. Increasing harmonic order (i.e., lowest harmonic number in the complex), however, resulted in a monotonic decline in performance. Results suggest that AP musicians use two pitch cues from harmonic structures: 1) spectral spacing between harmonic components, and 2) octave-related cues to note identification in individually resolved harmonics. Results of Experiment II showed that highpass filtered piano notes are identified by AP subjects at better than 75% accuracy even when the note’s energy is confined to the 4th and higher harmonics. Identification of highpass piano notes also appears to be better than that expected from pure or complex tones, possibly due to contributions from familiar timbre cues to note identity. Results of Experiment III showed that AP subjects can adjust the spectral spacing between harmonics of a missing-fundamental complex to accurately match the expected spacing from a target musical note. Implications of these findings for mechanisms of AP encoding are discussed. The text was submitted by the authors in English.  相似文献   

17.
The adaptation of a complex and pure-tone pitch was examined, using an adaptation stimulus composed of components of low harmonic number and test stimuli composed of components of high harmonic number, in order to examine separately the effects of pure-tone and complex pitch adaptation. The test stimulus either had the same fundamental as that of the adaptation stimulus, or it had a fundamental lower than that of the adaptation stimulus. Adaptation was measured using a pitch matching method. The adaptation and test stimuli were presented to one ear, and a pure-tone matching stimulus was presented to the opposite ear. Adaptation generally shifted the complex pitch of the test stimulus to a lower pitch. The component pitches, on the other hand, did not change, or shifted upwards slightly. The downward complex pitch changes were consistent with the adaptation of a central complex pitch channel.  相似文献   

18.
Studies of pitch perception often involve measuring difference limens for complex tones (DLCs) that differ in fundamental frequency (F0). These measures are thought to reflect F0 discrimination and to provide an indirect measure of subjective pitch strength. However, in many situations discrimination may be based on cues other than the pitch or the F0, such as differences in the frequencies of individual components or timbre (brightness). Here, DLCs were measured for harmonic and inharmonic tones under various conditions, including a randomized or fixed lowest harmonic number, with and without feedback. The inharmonic tones were produced by shifting the frequencies of all harmonics upwards by 6.25%, 12.5%, or 25% of F0. It was hypothesized that, if DLCs reflect residue-pitch discrimination, these frequency-shifted tones, which produced a weaker and more ambiguous pitch than would yield larger DLCs than the harmonic tones. However, if DLCs reflect comparisons of component pitches, or timbre, they should not be systematically influenced by frequency shifting. The results showed larger DLCs and more scattered pitch matches for inharmonic than for harmonic complexes, confirming that the inharmonic tones produced a less consistent pitch than the harmonic tones, and consistent with the idea that DLCs reflect F0 pitch discrimination.  相似文献   

19.
Virtual pitch in a computational physiological model   总被引:2,自引:0,他引:2  
A computational model of nervous activity in the auditory nerve, cochlear nucleus, and inferior colliculus is presented and evaluated in terms of its ability to simulate psychophysically-measured pitch perception. The model has a similar architecture to previous autocorrelation models except that the mathematical operations of autocorrelation are replaced by the combined action of thousands of physiologically plausible neuronal components. The evaluation employs pitch stimuli including complex tones with a missing fundamental frequency, tones with alternating phase, inharmonic tones with equally spaced frequencies and iterated rippled noise. Particular attention is paid to differences in response to resolved and unresolved component harmonics. The results indicate that the model is able to simulate qualitatively the related pitch-perceptions. This physiological model is similar in many respects to autocorrelation models of pitch and the success of the evaluations suggests that autocorrelation models may, after all, be physiologically plausible.  相似文献   

20.
The ability to separate simultaneous auditory objects is crucial to infant auditory development. Music in particular relies on the ability to separate musical notes, chords, and melodic lines. Little research addresses how infants process simultaneous sounds. The present study used a conditioned head-turn procedure to examine whether 6-month-old infants are able to discriminate a complex tone (240 Hz, 500 ms, six harmonics in random phase with a 6 dB roll-off per octave) from a version with the third harmonic mistuned. Adults perceive such stimuli as containing two auditory objects, one with the pitch of the mistuned harmonic and the other with pitch corresponding to the fundamental of the complex tone. Adult thresholds were between 1% and 2% mistuning. Infants performed above chance levels for 8%, 6%, and 4% mistunings, with no significant difference between conditions. However, performance was not significantly different from chance for 2% mistuning and significantly worse for 2% compared to all larger mistunings. These results indicate that 6-month-old infants are sensitive to violations of harmonic structure and suggest that they are able to separate two simultaneously sounding objects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号