首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study the formation of chromium substituted YBa2Cu4O8 (Y-124) superconductors has been investigated by TG/DTA measurements. The YBa2(Cu1−xCrx)4O8 ceramics with nominal compositions of x=0.01, 0.03, 0.05, 0.10 and 0.20 have been prepared by an aqueous sol-gel method using aqueous mixtures of the corresponding metal acetates and nitrates. Homogeneous precursor gels were obtained by complexing metal ions with tartaric acid. To assist the interpretation of the results obtained the synthesis products were additionally characterized by X-ray powder diffraction (XRD) and resistivity measurements. It was determined that doping the YBa2Cu4O8 phase with chromium has a strong effect on the phase purity and superconducting properties of the synthesis products.  相似文献   

2.
Solubility in the Na2MoO4-Na2SO4-H2O system was studied using isothermal saturation at 5–100°C. The boundaries of crystallization fields were determined for sodium sulfate and sodium molybdate. Solid solutions were not observed within the range of the temperatures studied. The density, refractive index, and dynamic viscosity of the saturated solutions of the system were determined, and these data were used to calculate the molar volume, kinematic viscosity, and apparent molar volume of the sum of salts in these solutions. All property isotherms of solutions are in a strict correlation with the solubility in the system; this correlation is represented as an isobaric-isothermal diagram.  相似文献   

3.
LiNi0.80Co0.15Al0.05O2 (NCA) is explored to be applied in a hybrid Li+/Na+ battery for the first time. The cell is constructed with NCA as the positive electrode, sodium metal as the negative electrode, and 1 M NaClO4 solution as the electrolyte. It is found that during electrochemical cycling both Na+ and Li+ ions are reversibly intercalated into/de-intercalated from NCA crystal lattice. The detailed electrochemical process is systematically investigated by inductively coupled plasma-optical emission spectrometry, ex situ X-ray diffraction, scanning electron microscopy, cyclic voltammetry, galvanostatic cycling, and electrochemical impedance spectroscopy. The NCA cathode can deliver initially a high capacity up to 174 mAh g?1 and 95% coulombic efficiency under 0.1 C (1 C?=?120 mA g?1) current rate between 1.5–4.1 V. It also shows excellent rate capability that reaches 92 mAh g?1 at 10 C. Furthermore, this hybrid battery displays superior long-term cycle life with a capacity retention of 81% after 300 cycles in the voltage range from 2.0 to 4.0 V, offering a promising application in energy storage.  相似文献   

4.
The surface of ceramic electrolyte ZrO2 + 9 mol % Y2O3, hereinafter referred to as YSZ (abbreviated yttria stabilized zirconia), was modified with 0.1 to 0.2 μm oxide films of ZrO2, Y2O3, and YSZ (same composition as substrate) by dip coating in alcohol solutions of the relevant salts and further annealing. The results of scanning electronic microscopy and X-ray diffraction evidence epitaxial film growth. By means of impedance spectroscopy at the temperatures of 500 to 600°C, the effect of YZS electrolyte surface modification with ZrO2, Y2O3, and YSZ films to the polarization resistance of silver electrode was studied.  相似文献   

5.
The present study deals with the electrochemical reductive dissolution of Mn3O4, which was added to carbon-paste electroactive electrodes (CPEEs) in acid solutions. It was found that in the experimental conditions the thermodynamically stable form of manganese was . Kinetic features of the electrochemical reductive dissolution of Mn3O4, which was realized under potential cycling conditions (+1.0 V→−0.7 V→+1.0 V), were determined by the electrode polarization direction. It was shown that the cathodic reduction of Mn3O4 was accomplished in three stages. Manganese was dissolved in the supporting solution only at the third stage. The first two stages involved solid-phase reactions. The anodic cycling stage included an active dissolution of Mn3O4 and the lower manganese oxide (MnO) accumulated on the electrode surface during the cathodic reduction.  相似文献   

6.
Pt-MoO x deposits synthesized by an electrochemical method are shown to be instable in methanol solutions at potentials ≥0.3 V. It is assumed that molybdenum oxides in the deposit composition react with methanol. The reduction of molybdenum compounds with methanol to form soluble Mo(+3) complexes in the presence of platinum is confirmed by spectrophotometric data. The MoO x reaction with methanol leads to the removal of molybdenum compounds from the electrode surface, which is accompanied by the loss of its catalytic activity in the methanol oxidation reaction.  相似文献   

7.
A series of novel organic ligands with dipicolylamine and disulfide groups connected by polymethylene, alkylaryl, alkoxyaryl, or alkoxycarbonyl linker was synthesized. The electrochemical study by cyclic voltammetry was carried out for two synthesized ligands, and the formation of the complexes with Cu(MeCN)ClO4 in the solution or on the gold electrode surface was established. The complex of CuI with 1,24-bis[N,N-bis(2-pyridylmethyl)-glycinoyloxy]-12,13-dithiatetracosane chemisorbed on the Au electrode is capable of binding molecular oxygen from solution.  相似文献   

8.
A novel electroless deposition method for depositing highly uniform adhesive thin films of copper selenide (Cu3Se2) on silicon substrates from aqueous solutions is described. The deposition is carried out by two coupled galvanic reactions in a single deposition bath containing copper cations, hydrogen fluoride, and selenous acid: the galvanic deposition of copper on silicon and the subsequent galvanic reaction between the deposited copper with selenous acid in the deposition bath. The powder X-ray diffraction and scanning electron microscopy are used to characterize and examine the deposited films.  相似文献   

9.
Joint reduction of Cu(II), Se(IV), and In(III) ions at a molybdenum electrode from a solution based of sulfosalicylic acid solution was studied. The optimal range of potentials for deposition of the CuInSe2 compound was chosen. The composition of the films obtained was confirmed by X-ray phase and electron microprobe analyses.  相似文献   

10.
A series of Li3V2(PO4)3/C composites with different amounts of carbon are synthesized by a combustion method. The physical and electrochemical properties of the Li3V2(PO4)3/C composites are investigated by X-ray diffraction, element analysis, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy and electrochemical measurements. The effects of carbon content of Li3V2(PO4)3/C composites on its electrochemical properties are conducted with cyclic voltammetry and electrochemical impedance. The experiment results clearly show that the optimal carbon content is 4.3 wt %, and more or less amount of carbon would be unfavorable to electrochemical properties of the Li3V2(PO4)3/C electrode materials. The results would provide some basis for further improvement on the Li3V2(PO4)3 electrode materials.  相似文献   

11.
Non-precious metal bifunctional catalysts are of great interest for metal–air batteries, electrolysis, and regenerative fuel cell systems due to their performance and cost benefits compared to the Pt group metals (PGM). In this work, metal oxides of La0.1Ca0.9MnO3 and nano Co3O47 catalyst as bifunctional catalysts were used in oxygen reduction and evolution reactions (ORER). The catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N2 adsorption isotherms. The electrocatalytic activity of the perovskite-type La0.1Ca0.9MnO3 and Co3O4 catalysts both as single and mixtures of both were assessed in alkaline solutions at room temperature. Electrocatalyst activity, stability, and electrode kinetics were studied using cyclic voltammetry (CV) and rotating disk electrode (RDE). This study shows that the bifunctional performance of the mixed La0.1Ca0.9MnO3 and nano Co3O4 was superior in comparison to either La0.1Ca0.9MnO3 or nano Co3O4 alone for ORER. The improved activity is due to the synergistic effect between the La0.1Ca0.9MnO3 and nano Co3O4 structural and surface properties. This work illustrates that hybridization between these two metal oxides results in the excellent bifunctional oxygen redox activity, stability, and cyclability, leading to a cost-effective application in energy conversion and storage, albeit to the cost of higher catalyst loadings.  相似文献   

12.
This paper reports the results of an investigation into enhancement of the electrochemical oxidation of p-aminophenol (4-AP) in an aqueous solution with a boron-doped diamond (BDD) electrode, assisted by photocatalysis using a zeolite-supported TiO2 (Z-TiO2) catalyst. The BDD electrode was characterised in 0.1 M Na2SO4-supporting electrolyte and the presence of 4-AP by open-circuit potential behaviour (OCP) and cyclic voltammetry (CV). The electrode behaviour was investigated in the dark and following UV irradiation and in the absence/presence of the Z-TiO2 catalyst. The electro-oxidation process was carried out using chronoamperometry (CA) and multiple-pulsed amperometry (MPA) at the selected potential under potentiostatic conditions. The electrochemical degradation process of 4-AP on the BDD electrode was improved by the application of a pulsed potential, which allowed both in-situ electrochemical cleaning of the electrode and indirect oxidation of 4-AP by oxygen evolution. The application of photocatalysis using Z-TiO2 in the 4-AP electrochemical degradation exhibited an enhanced effect when the anodic potential was set at +1.25 V vs. Ag/AgCl in the water stability region, close to the oxygen evolution potential.  相似文献   

13.
The electrochemical behavior of the LaSrCuO4 − δ/Ce0.9Gd0.1O2 − δ interface is studied by impedance spectroscopy and cyclic voltammetry methods. By analyzing the dependence of the impedance frequency spectra on the oxygen partial pressure, the rate-determining stages of oxygen exchange are determined in the temperature interval of 500–900°C. For temperatures above 700°C, the adsorption of oxygen molecules and their dissociation to oxygen atoms are shown to make a substantial contribution to the polarization resistance of the overall electrode process, besides the charge-transfer resistance.  相似文献   

14.
Several transition metal (Cu2+, Fe3+, Zn2+, Mn4+, and Cr6+) salts of H4PMo11VO40 were prepared and their solutions were used initially for H2S removal in the liquid redox process. H2S removal tests were performed by dynamic absorption experiments. Among these polyoxometalates, that with the Cu2+ cation was found to have pronounced H2S removal performance with the removal efficiency of up to 98%. The relevant oxidative desulfurization mechanism and the role of Cu2+ were studied.  相似文献   

15.
Isotherms of copper cation sorption by H-ZSM-5 zeolite from aqueous and aqueous ammonia solutions of copper acetate, chloride, nitrate, and sulfate are considered in terms of Langmuir’s monomolecular adsorption model. Using UV-Vis diffuse reflectance spectroscopy, IR spectroscopy, and temperatureprogrammed reduction with hydrogen and carbon monoxide, it has been demonstrated that the electronic state of the copper ions is determined by the ion exchange and heat treatment conditions. The state of the copper ions has an effect on the redox properties and reactivity of the Cu-ZSM-5 catalysts in the selective catalytic reduction (SCR) of NO with propane and in N2O decomposition. The amount of Cu2+ that is sorbed by zeolite H-ZSM-5 from aqueous solution and is stabilized as isolated Cu2+ cations in cationexchange sites of the zeolite depends largely on the copper salt anion. The quantity of Cu(II) cations sorbed from aqueous solutions of copper salts of strong acids is smaller than the quantity of the same cations sorbed from the copper acetate solution. When copper chloride or sulfate is used, the zeolite is modified by the chloride or sulfate anion. Because of the presence of these anions, the redox properties and nitrogen oxides removal (DeNO x ) efficiency of the Cu-ZSM-5 catalysts prepared using the copper salts of strong acids are worse than the same characteristics of the sample prepared using the copper acetate solution. The addition of ammonia to the aqueous solutions of copper salts diminishes the copper salt anion effect on the amount of Cu(II) sorbed from these solutions and hampers the nonspecific sorption of anions on the zeolite surface. As a consequence, the redox and DeNO x properties of Cu-ZSM-5 depend considerably on the NH4OH/Cu2+ ratio in the solution used in ion exchange. The aqueous ammonia solutions of the copper salts with NH4OH/Cu2+ = 6–10 stabilize, in the Cu-ZSM-5 structure, Cu2+ ions bonded with extraframework oxygen, which are more active in DeNO x than isolated Cu2+ ions (which form at NH4OH/Cu2+ = 30) or nanosized CuO particles (which form at NH4OH/Cu2+ = 3).  相似文献   

16.
Spinel powders of LiMn2−x RE x O4 (RE = La, Ce, Nd, Sm; 0 ≤ x ≤ 0.1) have been synthesized by solid-phase reaction. The structure and electrochemical properties of these electrode materials were characterized by X-ray diffraction (XRD), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and charge–discharge experiment. The part substitution of rare-earth element RE for Mn in LiMn2O4 decreases the lattice parameter, resulting in the improvement of structural stability, and decreases the charge transfer resistance during the electrochemical process of LiMn2O4. As a result, the cycle ability, 55 °C high-temperature and high-rate performances of LiMn2−x RE x O4 electrode materials are significantly improved with increasing RE addition, compared to the pristine LiMn2O4.  相似文献   

17.
A novel biocompatible composite film containing sodium alginate (SA), room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6), SiO2 nanoparticle, and hemoglobin (Hb) was fabricated and covered on the surface of a traditional carbon paste elecrode (CPE). The immobilized Hb on the electrode surface showed good direct electrochemical behaviors, and a pair of quasi-reversible redox peaks of Hb was obtained, which indicated that the direct electron transfer of Hb with the electrode surface had been achieved. The SA/nano-SiO2/BMIMPF6/Hb/CPE showed dramatically electrocatalytic activity to the reduction of trichloroacetic acid, hydrogen peroxide (H2O2), and oxygen (O2). The kinetic parameters for the electrocatalytic reactions were evaluated. The composite film showed the potential to the biosensor and biocatalysis.  相似文献   

18.
The EMF method with a solid Cu+-conducting electrolyte of Cu4RbCl3I2 was sued to study the Cu-Tl-Te system in the temperature range of 300–420 K. A diagram of solid-phase equilibriums of this system is constructed, partial molar functions of copper in alloys, standard thermodynamic functions of formation and standard entropies of CuTlTe2, CuTl4Te3, Cu2TlTe2, Cu3TlTe2, Cu9TlTe5 triple compounds and Cu x Tl5 − x Te3 solid solutions (0 < x < 1) are calculated. The obtained results confirmed the assumption as to the possibility of using this modification for the EMF technique for thermodynamic studies of copper-containing triple systems, even if they contain a less noble component than copper.  相似文献   

19.
Excitation of hexanuclear molybdenum complexes such as Mo6Cl12 and its derivatives in the ultraviolet results in a strongly red-shifted luminescence centered at 750nm. Since oxygen efficiently quenches the luminescence, these thermally stable inorganic complexes are candidate lumophores for real-time, high temperature optical fiber based sensing of oxygen. Sol-gel films containing the acetonitrile complex of Mo6Cl12 were deposited on quartz substrates by dip coating. After drying, the films were heated at 200C for 1 h. The luminescence lineshapes of films before and after heating were unchanged, indicating that heating did not adversely affect the cluster photophysics. Compared to solutions of the acetonitrile complex, quenching by oxygen was smaller in the as-prepared films, but heating at 200C for 1 h increased the quenching, apparently due to increased oxygen permeability resulting from the loss of water or other small molecules from the matrix. These results confirm the potential of hexanuclear molybdenum complexes such as Mo6Cl12⋅2CH3CN as the lumophores in fiber optic oxygen sensors that can operate up to 200C.  相似文献   

20.
Sn-doped Li-rich layered oxides of Li1.2Mn0.54-x Ni0.13Co0.13Sn x O2 have been synthesized via a sol-gel method, and their microstructure and electrochemical performance have been studied. The addition of Sn4+ ions has no distinct influence on the crystal structure of the materials. After doped with an appropriate amount of Sn4+, the electrochemical performance of Li1.2Mn0.54-x Ni0.13Co0.13Sn x O2 cathode materials is significantly enhanced. The optimal electrochemical performance is obtained at x = 0.01. The Li1.2Mn0.53Ni0.13Co0.13Sn0.01O2 electrode delivers a high initial discharge capacity of 268.9 mAh g?1 with an initial coulombic efficiency of 76.5% and a reversible capacity of 199.8 mAh g?1 at 0.1 C with capacity retention of 75.2% after 100 cycles. In addition, the Li1.2Mn0.53Ni0.13Co0.13Sn0.01O2 electrode exhibits the superior rate capability with discharge capacities of 239.8, 198.6, 164.4, 133.4, and 88.8 mAh g?1 at 0.2, 0.5, 1, 2, and 5 C, respectively, which are much higher than those of Li1.2Mn0.54Ni0.13Co0.13O2 (196.2, 153.5, 117.5, 92.7, and 43.8 mAh g?1 at 0.2, 0.5, 1, 2, and 5 C, respectively). The substitution of Sn4+ for Mn4+ enlarges the Li+ diffusion channels due to its larger ionic radius compared to Mn4+ and enhances the structural stability of Li-rich oxides, leading to the improved electrochemical performance in the Sn-doped Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号