首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-level ab initio calculations have been used to study radical intermediates in the reactions catalyzed by lysine 2,3-aminomutase (2,3-LAM) and lysine 5,6-aminomutase (5,6-LAM). The reactions of these enzymes with the substrate analogues 4-oxalysine (4-OL), 4-thialysine (4-TL), or trans-4,5-dehydrolysine (t-4,5-DL) are rationalized in terms of stabilization provided by the substituent to the adjacent radical center. Large changes in the exothermicity accompanying the initial H-abstraction are observed relative to the lysine reference values that follow the series 4-OL < 4-TL < t-4,5-DL. These changes have the primary effect of increasing the endothermicity for subsequent ring-closure to form the putative aziridinylcarbinyl radical intermediate. Such stabilization is consistent with experimental observations of the substrate-derived radical (S*) in the reaction of 2,3-LAM with 4-TL as well as the ability of t-4,5-DL to act as an irreversible inhibitor of 2,3-LAM. Our calculations suggest that 4-TL and trans-3,4-dehydrolysine may also permit experimental characterization of S* radicals in the reactions catalyzed by 5,6-LAM. Strategies for modifying PLP are presented that might lead to the first observation of the aziridinylcarbinyl radical intermediate (I*) in the aminomutase-catalyzed reactions.  相似文献   

2.
The interaction of nitric oxide (NO) with iron-sulfur cluster proteins results in degradation and breakdown of the cluster to generate dinitrosyl iron complexes (DNICs). In some cases the formation of DNICs from such cluster systems can lead to activation of a regulatory pathway or the loss of enzyme activity. In order to understand the basic chemistry underlying these processes, we have investigated the reactions of NO with synthetic [2Fe-2S] and [4Fe-4S] clusters. Reaction of excess NO(g) with solutions of [Fe2S2(SR)4](2-) (R = Ph, p-tolyl (4-MeC6H4), or 1/2 (CH2)2-o-C6H4) cleanly affords the respective DNIC, [Fe(NO)2(SR)2](-), with concomitant reductive elimination of the bridging sulfide ligands as elemental sulfur. The structure of (Et4N)[Fe(NO)2(S-p-tolyl)2] was verified by X-ray crystallography. Reactions of the [4Fe-4S] clusters, [Fe4S4(SR)4](2-) (R = Ph, CH2Ph, (t)Bu, or 1/2 (CH2)-m-C6H4) proceed in the absence of added thiolate to yield Roussin's black salt, [Fe4S3(NO)7](-). In contrast, (Et4N)2[Fe4S4(SPh)4] reacts with NO(g) in the presence of 4 equiv of (Et4N)(SPh) to yield the expected DNIC. For all reactions, we could reproduce the chemistry effected by NO(g) with the use of trityl-S-nitrosothiol (Ph3CSNO) as the nitric oxide source. These results demonstrate possible pathways for the reaction of iron-sulfur clusters with nitric oxide in biological systems and highlight the importance of thiolate-to-iron ratios in stabilizing DNICs.  相似文献   

3.
4.
Stop for NadA! A [4Fe-4S] enzyme, NadA, catalyzes the formation of quinolinic acid in de?novo nicotinamide adenine dinucleotide (NAD) biosynthesis. A structural analogue of an intermediate, 4,5-dithiohydroxyphthalic acid (DTHPA), has an in?vivo NAD biosynthesis inhibiting activity in E. coli. The inhibitory effect can be explained by the coordination of DTHPA thiolate groups to a unique Fe site of the NadA [4Fe-4S] cluster.  相似文献   

5.
The reactivity of protein bound iron-sulfur clusters with nitric oxide (NO) is well documented, but little is known about the actual mechanism of cluster nitrosylation. Here, we report studies of members of the Wbl family of [4Fe-4S] containing proteins, which play key roles in regulating developmental processes in actinomycetes, including Streptomyces and Mycobacteria, and have been shown to be NO responsive. Streptomyces coelicolor WhiD and Mycobacterium tuberculosis WhiB1 react extremely rapidly with NO in a multiphasic reaction involving, remarkably, 8 NO molecules per [4Fe-4S] cluster. The reaction is 10(4)-fold faster than that observed with O(2) and is by far the most rapid iron-sulfur cluster nitrosylation reaction reported to date. An overall stoichiometry of [Fe(4)S(4)(Cys)(4)](2-) + 8NO → 2[Fe(I)(2)(NO)(4)(Cys)(2)](0) + S(2-) + 3S(0) has been established by determination of the sulfur products and their oxidation states. Kinetic analysis leads to a four-step mechanism that accounts for the observed NO dependence. DFT calculations suggest the possibility that the nitrosylation product is a novel cluster [Fe(I)(4)(NO)(8)(Cys)(4)](0) derived by dimerization of a pair of Roussin's red ester (RRE) complexes.  相似文献   

6.
Russian Chemical Bulletin - The biological activity of a series of sulfur-nitrosyl iron complexes (NICs) depends on the structure of the ligands and the position of the functional groups in the...  相似文献   

7.
The radical SAM (RS) proteins RlmN and Cfr catalyze methylation of carbons 2 and 8, respectively, of adenosine 2503 in 23S rRNA. Both reactions are similar in scope, entailing the synthesis of a methyl group partially derived from S-adenosylmethionine (SAM) onto electrophilic sp(2)-hybridized carbon atoms via the intermediacy of a protein S-methylcysteinyl (mCys) residue. Both proteins contain five conserved Cys residues, each required for turnover. Three cysteines lie in a canonical RS CxxxCxxC motif and coordinate a [4Fe-4S]-cluster cofactor; the remaining two are at opposite ends of the polypeptide. Here we show that each protein contains only the one "radical SAM" [4Fe-4S] cluster and the two remaining conserved cysteines do not coordinate additional iron-containing species. In addition, we show that, while wild-type RlmN bears the C355 mCys residue in its as-isolated state, RlmN that is either engineered to lack the [4Fe-4S] cluster by substitution of the coordinating cysteines or isolated from Escherichia coli cultured under iron-limiting conditions does not bear a C355 mCys residue. Reconstitution of the [4Fe-4S] cluster on wild-type apo RlmN followed by addition of SAM results in rapid production of S-adenosylhomocysteine (SAH) and the mCys residue, while treatment of apo RlmN with SAM affords no observable reaction. These results indicate that in Cfr and RlmN, SAM bound to the unique iron of the [4Fe-4S] cluster displays two reactivities. It serves to methylate C355 of RlmN (C338 of Cfr), or to generate the 5'-deoxyadenosyl 5'-radical, required for substrate-dependent methyl synthase activity.  相似文献   

8.
Quinolinic acid is an intermediate in the biosynthesis of nicotinamide-containing redox cofactors. The ultimate step in the formation of quinolinic acid in prokaryotes is the condensation of iminosuccinate and dihydroxyacetone phosphate, which is catalyzed by the product of the nadA gene in Escherichia coli. A combination of UV-vis, M?ssbauer, and EPR spectroscopies, along with analytical methods for the determination of iron and sulfide, demonstrates for the first time that anaerobically purified quinolinate synthetase (NadA) from E. coli contains one [4Fe-4S] cluster per polypeptide. The protein is active, catalyzing the formation of quinolinic acid with a Vmax [ET]-1 of 0.01 s-1.  相似文献   

9.
The weakly coupled 15N atoms around a reduced Rieske [2Fe-2S] cluster of the uniformly 15N-labeled, hyperthermostable archaeal Rieske protein appear to produce readily observable cross-peaks in the HYSCORE spectra, with the well-resolved couplings of 0.3-0.4 MHz for the Nepsilon and 1.1 MHz for the peptide backbone nitrogens, in addition to the contributions from the coordinated Ndelta atoms. These features can be used for structure-mechanism studies of the biological redox protein system involving the weakly coupled nitrogens in coupled electron-proton transfer reactions.  相似文献   

10.
Pyruvate formate-lyase activating enzyme (PFL-AE) is a representative member of an emerging family of enzymes that utilize iron-sulfur clusters and S-adenosylmethionine (AdoMet) to initiate radical catalysis. Although these enzymes have diverse functions, evidence is emerging that they operate by a common mechanism in which a [4Fe-4S](+) interacts with AdoMet to generate a 5'-deoxyadenosyl radical intermediate. To date, however, it has been unclear whether the iron-sulfur cluster is a simple electron-transfer center or whether it participates directly in the radical generation chemistry. Here we utilize electron paramagnetic resonance (EPR) and pulsed 35 GHz electron-nuclear double resonance (ENDOR) spectroscopy to address this question. EPR spectroscopy reveals a dramatic effect of AdoMet on the EPR spectrum of the [4Fe-4S](+) of PFL-AE, changing it from rhombic (g = 2.02, 1.94, 1.88) to nearly axial (g = 2.01, 1.88, 1.87). (2)H and (13)C ENDOR spectroscopy was performed on [4Fe-4S](+)-PFL-AE (S = (1)/(2)) in the presence of AdoMet labeled at the methyl position with either (2)H or (13)C (denoted [1+/AdoMet]). The observation of a substantial (2)H coupling of approximately 1 MHz ( approximately 6-7 MHz for (1)H), as well as hyperfine-split signals from the (13)C, manifestly require that AdoMet lie close to the cluster. (2)H and (13)C ENDOR data were also obtained for the interaction of AdoMet with the diamagnetic [4Fe-4S](2+) state of PFL-AE, which is visualized through cryoreduction of the frozen [4Fe-4S](2+)/AdoMet complex to form the reduced state (denoted [2+/AdoMet](red)) trapped in the structure of the oxidized state. (2)H and (13)C ENDOR spectra for [2+/AdoMet](red) are essentially identical to those obtained for the [1+/AdoMet] samples, showing that the cofactor binds in the same geometry to both the 1+ and 2+ states of PFL-AE. Analysis of 2D field-frequency (13)C ENDOR data reveals an isotropic hyperfine contribution, which requires that AdoMet lie in contact with the cluster, weakly interacting with it through an incipient bond/antibond. From the anisotropic hyperfine contributions for the (2)H and (13)C ENDOR, we have estimated the distance from the closest methyl proton of AdoMet to the closest iron of the cluster to be approximately 3.0-3.8 A, while the distance from the methyl carbon to the nearest iron is approximately 4-5 A. We have used this information to construct a model for the interaction of AdoMet with the [4Fe-4S](2+/+) cluster of PFL-AE and have proposed a mechanism for radical generation that is consistent with these results.  相似文献   

11.
Some new 7,9-disubstituted 7H-1,2,3,4-tetrazolo[1,5-c]pyrrolo[3,2-e]pyrimidines 5 have been synthesized either by diazotization of 4-hydrazino-5,7-disubstituted-7H-pyrrolo[2,3-d]pyrimidines 4 obtained by hydrazinolysis of 4-chloro-5,7-disubstituted-7H-pyrrolo[2,3-d]pyrimidines 3 or via a substitution reaction between 3 and sodium azide. 5,7-Disubstituted-7H-pyrrolo[2,3-d]pyrimidin-4(3H)-ones 2 were obtained by cyclocondensation of 2-amino-3-cyano-1,4-disubstituted pyrroles 1 with formic acid which on chlorination using phosphorus oxychloride afforded 3 . A novel route for the synthesis of 4-amino-5,7-disubstituted-7H-pyrrolo[2,3-d]pyrimidines 6 by the reductive ring cleavage of 5 has been reported.  相似文献   

12.
To probe how H-bonding effects the redox potential changes in Fe-S proteins, we produced and studied a series of gaseous cubane-type analogue complexes, [Fe(4)S(4)(SEt)(3)(SC(n)H(2n+1))](2-) and [Fe(4)S(4)(SEt)(3)(SC(n)H(2n)OH)](2-) (n = 4, 6, 11; Et = C(2)H(5)). Intrinsic redox potentials for the [Fe(4)S(4)](2+/3+) redox couple involved in these complexes were measured by photoelectron spectroscopy. The oxidation energies from [Fe(4)S(4)(SEt)(3)(SC(n)H(2n)OH)](2-) to [Fe(4)S(4)(SEt)(3)(SC(n)H(2n)OH)](-) were determined directly from the photoelectron spectra to be approximately 130 meV higher than those for the corresponding [Fe(4)S(4)(SEt)(3)(SC(n)H(2n+1))](2-) systems, because of the OH...S hydrogen bond in the former. Preliminary Monte Carlo and density functional calculations showed that the H-bonding takes place between the -OH group and the S on the terminal ligand in [Fe(4)S(4)(SEt)(3)(SC(6)H(12)OH)](2-). The current data provide a direct experimental measure of a net H-bonding effect on the redox potential of [Fe(4)S(4)] clusters without the perturbation of other environmental effects.  相似文献   

13.
Despite the number of cellular and pathological mitoNEET-related processes, very few details are known about the mechanism of action of the protein. The recently discovered existence of a link between NEET proteins and cancer pave the way to consider mitoNEET and its Fe-S clusters as suitable targets to inhibit cancer cell proliferation. Here, we will review the variety of spectroscopic techniques that have been applied to study mitoNEET in an attempt to explain the drastic difference in clusters stability and reactivity observed for the two redox states, and to elucidate the cellular function of the protein. In particular, the extensive NMR assignment and the characterization of first coordination sphere provide a molecular fingerprint helpful to assist the design of drugs able to impair cellular processes or to directly participate in redox reactions or protein–protein recognition mechanisms.  相似文献   

14.
Pyruvate formate-lyase activating enzyme (PFL-AE) generates the catalytically essential glycyl radical on pyruvate formate-lyase via the interaction of the catalytically active [4Fe-4S]+ cluster with S-adenosylmethionine (AdoMet). Like other members of the Fe-S/AdoMet family of enzymes, PFL-AE is thought to function via generation of an AdoMet-derived 5'-deoxyadenosyl radical intermediate; however, the mechanistic steps by which this radical is generated remain to be elucidated. While all of the members of the Fe-S/AdoMet family of enzymes appear to have a unique iron site in the [4Fe-4S] cluster, based on the presence of a conserved three-cysteine cluster binding motif, the role of this unique site has been elusive. Here we utilize 35-GHz pulsed electron nuclear double resonance (ENDOR) studies of the [4Fe-4S]+ cluster of PFL-AE in complex with isotopically labeled AdoMet (denoted [1+/AdoMet]) to show that the unique iron serves to anchor the AdoMet for catalysis. AdoMet labeled with 17O at the carboxylate shows a coupling of A = 12.2 MHz, consistent with direct coordination of the carboxylate to the unique iron of the cluster. This is supported by 13C-ENDOR with the carboxylato carbon labeled with 13C, which shows a hyperfine coupling of 0.71 MHz. AdoMet enriched with 15N at the amino position gives rise to a spectrum with A(15N) = 5.8 MHz, consistent with direct coordination of the amino group to a unique iron of the cluster. Together, the results demonstrate that the unique iron of the [4Fe-4S] cluster anchors AdoMet by forming a classical N/O chelate with the amino and carboxylato groups of the methionine fragment.  相似文献   

15.
Exchange of [2Fe-2S] centers between Grx2 and the cluster scaffold protein ISU, and characterization of two mutually exclusive Grx2 binding sites on ISU by isothermal titration calorimetry supports a direct link for Grx and glutathione involvement in ISU promoted Fe-S cluster biosynthesis.  相似文献   

16.
The coupling of a single proton to [4Fe-4S]2+/+ oxidation/reduction in a de novo designed iron-sulfur protein maquette is presented. The reduced state pKared is 9.3, and the oxidized state pKaox is <6.5. The reduced state pKared shifts to 8.3 upon incorporation of a [4Fe-4Se]2+/+ cluster, implicating the cluster itself or its primary coordination sphere as the proton-coupling site.  相似文献   

17.
The hyperfine couplings for strongly and weakly coupled 15N nuclei around a reduced Rieske [2Fe-2S] center of uniformly 15N-labeled, hyperthermostable archaeal Rieske protein at pH 13.3 were determined by hyperfine sublevel correlation (HYSCORE) spectroscopy and compared with those at physiological pH. Significant changes in the hyperfine couplings of the terminal histidine Ndelta ligands and Nepsilon nuclei were observed between them, which can be explained by not only the redistribution of the unpaired electron spin density over the ligands but also the difference in the mixed-valence state of the fully deprotonated, reduced cluster. These quantitative data can be used in theoretical analysis for the selection of an appropriate model of the mixed-valence state of the reduced Rieske center at very alkaline pH.  相似文献   

18.
A series of synthetic [2Fe-2S] complexes with terminal thiophenolate ligands and tethered ether or thioether moieties has been prepared and investigated in order to provide models for the potential interaction of additional donor atoms with the Fe atoms in biological [2Fe-2S] clusters. X-ray crystal structures have been determined for six new complexes that feature appended Et (1(C)), OMe (1(O)), or SMe (1(S)) groups, or with a methylene group (2(C) ), an ether-O (2(O)), or an thioether-S (2(S)) linking two aryl groups. The latter two systems provide a constrained chelate arrangement that induces secondary bonding interactions with the ether-O and thioether-S, which is confirmed by density functional theory (DFT) calculations that also reveal significant spin density on those fifth donor atoms. Structural consequences of the secondary bonding interactions are analyzed in detail, and effects on the spectroscopic and electronic properties are probed by UV-vis, M?ssbauer, and (1)H NMR spectroscopy, as well by SQUID measurements and cyclic voltammetry. The potential relevance of the findings for biological [2Fe-2S] sites is considered.  相似文献   

19.
We have studied the reaction of 2,3-dihydro-4H-[1,3]thiazino[3,2-a]benzimidazol-4-one and 2-aryl-2,3-dihydro-4H-[1,3]thiazino[3,2-a]benzimidazol-4-ones with amines, alkylating reagents, and hydrogen peroxide. We have shown that the presence of an aryl substituent at the 2 position of [1,3-thiazino[3,2-a]benzimidazol-4-ones has a substantial effect on the direction of the reactions. __________ Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 445–452, March, 2006.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号