首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The issue of wheeled vehicles vs. tracked vehicles for off-road operations has been a subject of debate for a long period of time. Recent interest in the development of vehicles for the rapid deployment of armed forces has given a new impetus to this debate. While a number of experimental studies in comparing the performances of specific wheeled vehicles with those of tracked vehicles under selected operating environments have been performed, it appears that relatively little fundamental analysis on this subject has been published in the open literature, including the Journal of Terramechanics. This paper is aimed at evaluating the tractive performance of wheeled and tracked vehicles from the standpoint of the mechanics of vehicle–terrain interaction. The differences between a tire and a track in generating thrust are elucidated. The basic factors that affect the gross traction of wheeled and tracked vehicles are identified. A general comparison of the thrust developed by a multi-axle wheeled vehicle with that of a tracked vehicle is made, based on certain simplifying assumptions. As the interaction between an off-road vehicle and unprepared terrain is very complex, to compare the performance of a wheeled vehicle with that of a tracked vehicle realistically, comprehensive computer simulation models are required. Two computer simulation models, one for wheeled vehicles, known as NWVPM, and the other for tracked vehicles, known as NTVPM, are described. As an example of the applications of these two computer simulation models, the mobility of an 8 × 8 wheeled vehicle, similar to a light armoured vehicle (LAV), is compared with that of a tracked vehicle, similar to an armoured personnel carrier (APC). It is hoped that this study will illustrate the fundamental factors that limit the traction of wheeled vehicles in comparison with that of tracked vehicles, hence contributing to a better understanding of the issue of wheels vs. tracks.  相似文献   

2.
Observation of the locomotion of animals and human beings in difficult terrain makes it quite obvious that legged locomotion offers substantial mobility advantages over conventional wheeled or tracked systems. However, effective adaptation of legged locomotion principles to off-road vehicles has to date been frustrated by the complexity of the joint coordination control problem and by the lack of suitable sources of power for individual leg joints. This paper is addressed to the first problem and is intended to show that some of the techniques used in aircraft autopilots can be adapted to legged vehicle control. The main results presented are derived from a computer simulation study of a system in which vehicle speed and direction are determined by a human operator while individual joint commands are generated automatically by a digital computer. Present indications are that such a vehicle might be as easy to control as a conventional wheeled or tracked automotive system.  相似文献   

3.
U.S Army’s mission is to develop, integrate, and sustain the right technology solutions for all manned and unmanned ground vehicles, and mobility is a key requirement for all ground vehicles. Mobility focuses on ground vehicles’ capabilities that enable them to be deployable worldwide, operationally mobile in all environments, and protected from symmetrical and asymmetrical threats. In order for military ground vehicles to operate in any combat zone, the planners require a mobility map that gives the maximum predicted speeds on these off-road terrains. In the past, empirical and semi-empirical techniques (Ahlvin and Haley, 1992; Haley et al., 1979) were used to predict vehicle mobility on off-road terrains such as the NATO Reference Mobility Model (NRMM). Because of its empirical nature, the NRMM method cannot be extrapolated to new vehicle designs containing advanced technologies, nor can it be applied to lightweight robotic vehicles.The mobility map is a function of different parameters such as terrain topology and profile, soil type (mud, snow, sand, etc.), vegetation, obstacles, weather conditions, and vehicle type and characteristics.A physics-based method such as the discrete element method (DEM) (Dasch et al., 2016) was identified by the NATO Next Generation NRMM Team as a potential high fidelity method to model the soil. This method allows the capture of the soil deformation as well as its non-linear behavior. Hence it allows the simulation of the vehicle on any off-road terrain and have an accurate mobility map generated. The drawback of the DEM method is the required simulation time. It takes several weeks to generate the mobility map because of the large number of soil particles (millions) even while utilizing high performance computing.One approach to reduce the computational time is to use machine learning algorithms to predict the mobility map. Machine learning (Boutell et al., 2004; Burges, 1998; Barber et al., 1997) can lead to very accurate mobility predictions over a wide range of terrains. Machine learning is divided into two categories: the supervised and the unsupervised learning. Supervised learning requires the training data to be labeled into predetermined classes, while the unsupervised learning does not require the training data to be labeled. Machine learning can help generate mobility maps using trained models created from a minimum number of simulation runs. In this study different supervised machine learning algorithms such as the support vector machine (SVM), the nearest neighbor classifier (k-NN), decision trees, and boosting methods were used to create trained models labeled as 2 classes for the ‘go/no-go’ map, 5 classes for the 5-speed map, and 7 classes for the 7-speed map. The trained models were created from the physics-based simulation runs of a nominal wheeled vehicle traversing on a cohesive soil.  相似文献   

4.
The Soviet Union has developed many types of tires to increase the mobility of wheeled vehicles. Five design types are described with characteristics, models, sizes, and construction details noted. This information is primarily the result of searching Soviet publications. The five design types will be discussed in their order of dev elopment. The focus of this report is on tires for use on military transport vehicles.  相似文献   

5.
A review is given of the use of mean maximum pressure (MMP) in specifying off-road performance of vehicles. The need to quote a single mobility criterion which is unbiased in favour of either wheeled or tracked vehicles is recognised. The difficulties which researchers have encountered in developing expressions for MMP for both wheeled and tracked vehicles which correctly describe their relative performance are highlighted. Predictions of MMP for wheeled vehicles are compared with ground pressure measurements for a number of vehicles and it is shown that the MMP parameter does not actually represent the ground pressure accurately. Finally it is argued that the only safe route for the specifier is to quote a range of soil types, conditions and gradients on which the vehicle is to operate. This shifts the responsibility to the designer but also clears the way for innovative design, beyond the constraints of the MMP formulae.  相似文献   

6.
Prediction of impacts of wheeled vehicles on terrain   总被引:3,自引:1,他引:3  
Traffic of off-road vehicles can disturb soil, decrease vegetation development, and increase soil erosion. Terrain impacts caused by wheeled off-road vehicles were studied in this paper. Models were developed to predict terrain impacts caused by wheeled vehicles in terms of disturbed width and impact severity. Disturbed width and impact severity are not only controlled by vehicle types and vehicle dimensions, but also influenced by soil conditions and vehicle dynamic properties (turning radius, velocity). Field tests of an eight-wheeled vehicle and a four-wheeled vehicle were conducted to test these models. Field data of terrain–vehicle interactions in different vehicle dynamic conditions were collected. Vehicle dynamic properties were derived from a global position system (GPS) based tracking system. The average prediction percentage error of the theoretical disturbed width model is less than 20%. The average absolute error between the predicted impact severity and the measured value is less than an impact severity value of 12%. These models can be used to predict terrain impacts caused by off-road wheeled vehicles.  相似文献   

7.
Assessing the mobility of off-road vehicles is a complex task that most often falls back on semi-empirical approaches to quantifying the vehicle–terrain interaction. Herein, we concentrate on physics-based methodologies for wheeled vehicle mobility that factor in both tire flexibility and terrain deformation within a fully three-dimensional multibody system approach. We represent the tire based on the absolute nodal coordinate formulation (ANCF), a nonlinear finite element approach that captures multi-layered, orthotropic shell elements constrained to the wheel rim. The soil is modeled as a collection of discrete elements that interact through contact, friction, and cohesive forces. The resulting vehicle/tire/terrain interaction problem has several millions of degrees of freedom and is solved in an explicit co-simulation framework, built upon and now available in the open-source multi-physics package Chrono. The co-simulation infrastructure is developed using a Message Passing Interface (MPI) layer for inter-system communication and synchronization, with additional parallelism leveraged through a shared-memory paradigm. The formulation and software framework presented in this investigation are proposed for the analysis of the dynamics of off-road wheeled vehicle mobility. Its application is demonstrated by numerical sensitivity studies on available drawbar pull, terrain resistance, and sinkage with respect to parameters such as tire inflation pressure and soil cohesion. The influence of a rigid tire assumption on mobility is also discussed.  相似文献   

8.
A methodology for quantitatively assessing vehicular rutting on terrains   总被引:1,自引:0,他引:1  
This paper presents a quantitative method for assessing the environmental impact of terrain/vehicle interactions during tactical missions. Area wide mobility analyses were conducted using three standard US military tracked and wheeled vehicles over terrain regions representing both fine-grained and course-grained soils. The NATO reference mobility model, Version 2, was used to perform the on- and off-road mobility analysis. Vehicle and terrain characterizations along with different climate scenarios were used as input parameters to predict vehicle rut depth performance for the different vehicles and terrain conditions. The vehicles’ performance was statistically mapped over these terrain regions for percent area traveled and the resulting rut depth created by each vehicle. A selection of tactical scenarios for each vehicle was used to determine rut depth for a range of vehicle missions. A vehicle mission severity rating method, developed at the US Army Engineer Research and Development Center, was used to rate the selected missions and resulting rut depths.  相似文献   

9.
Modeling and simulation of vehicles in sand is critical for characterizing off-road mobility in arid and coastal regions. This paper presents improved algorithms for calculating sinkage (z) of wheeled vehicles operating on loose dry sand. The algorithms are developed based on 2737 tests conducted on sand with 23 different wheel configurations. The test results were collected from Database Records for Off-road Vehicle Environments (DROVE), a recently developed database of tests conducted with wheeled vehicles operating in loose dry sand. The study considers tire diameters from 36 to 124 cm with wheel loads of 0.19–36.12 kN. The proposed algorithms present a simple form of sinkage relationships, which only require the ratio of the wheel ground contact pressure and soil strength represented by cone index. The proposed models are compared against existing closed form solutions defined in the Vehicle Terrain Interface (VTI) model. Comparisons suggest that incorporating the proposed models into the VTI model can provide comparable predictive accuracy with simpler algorithms. In addition to simplicity, it is believed that the relationship between cone index (representing soil shear strength) and the contact pressure (representing the applied pressure to tire-soil interface) can better capture the physics of the problem being evaluated.  相似文献   

10.
This paper addresses several preconditioning techniques for strengthening a deep snowpack in order to support vehicular loadings. The criteria imposed on preconditioning a deep snowpack were: (1) only light commercially-available vehicles or equipment could be used, (2) preconditioning would only be applied to the snow surface and (3) any additives to be used should be easily acquired in remote areas. Viable preconditioning techniques were first evaluated in the laboratory using artificial snow. The techniques explored were surface loading (surcharging), heating and mixing with additives (sand and straw) followed by surcharging. The properties of the laboratory-preconditioned snow were evaluated primarily in terms of footing penetration resistance and Rammsonde hardness. Based on the laboratory results, preconditioning of a deep natural snowpack was carried out. Surcharging the snowpack was achieved by a BV206 Carrier. The preconditioning techniques studied were surcharging, heating and mixing with additives (salt and straw). Various ageing periods were imposed. The load-carrying capacity of the preconditioned snowpack was evaluated by multipasses of two wheeled vehicles (Iltis and 5/4 ton truck). The results indicated that a soft deep snowpack can be preconditioned to the extent that it can support multipasses of wheeled vehicles.  相似文献   

11.
Semi-active rotary damper for a heavy off-road wheeled vehicle   总被引:1,自引:0,他引:1  
The development, simulation and laboratory testing of two-state discrete adjustable semi-active rotary dampers for heavy off-road wheeled vehicles, which is a joint venture between the South African based company Reumech Ermetek and Horstman Defence Systems from the UK, is described. A brief history of semi-active damping and rotary dampers is given, after which the working principle and features of combining the two technologies is outlined. Three dimensional simulation is used to determine the ride comfort gains achievable with semi-active rotary dampers compared to the conventional translational dampers currently used on the vehicle under consideration. Simulations are performed over different terrains, including the APG track and discrete obstacles. Semi-active rotary dampers were integrated on the 6×6 GV6 Self-propelled Gun Howitzer in order to quantify the improvements in ride comfort, transient response and handling of the vehicle as indicated by the simulation results. The control system, control strategies and characterisation tests, which includes determination of on and off characteristics as well as valve response times, are discussed.  相似文献   

12.
Quantification of multipass vehicle impacts is needed to determine terrain disturbance during military training. This study, conducted at Fort Riley, Kansas on a clay loam soil, evaluated the multipass terrain impacts of four military vehicles: the M1A1 Main Battle Tank, M998 HMMWV, M985 HEMTT, and M113 APC. Disturbed width and impact severity were assessed along 14 spirals subjected to a maximum of eight passes for a total of 696 impact points. Project goals included evaluating vegetation impacts by tracked and wheeled military vehicles across multiple passes in order to develop coefficients allowing more accurate predictive modeling of vehicle multipass impacts. Multiple passes produce increased vegetative impacts, with multipass coefficients (MPC) ranging from 0.98 to 4.44 depending on vehicle type, size and turn severity. Tracked vehicles were found to have a higher multipass coefficient than wheeled vehicles, with multipass coefficients increasing with vehicle weight and the sharpness of turns. The components of a more theoretical and universal multipass vehicle impact model are discussed. Understanding multipass dynamics will allow land managers to determine the extent and severity of terrain impacts on military training areas and quickly evaluate vehicle environmental impacts when used in conjunction with a GPS-based vehicle tracking system (VTS).  相似文献   

13.
The development and success of the Swedish Combat Vehicle CV90 has demonstrated the abilities of the author in the field of terramechanics related to tracked military vehicles. The honour of the Bekker–Reece–Radforth Award 2002 has been granted in recognition of these achievements made during the author's employment at Hägglunds Vehicle AB since 1975. Hägglunds Vehicle AB has been a producer of military vehicles since the late 1950s, although the first years concentrated on production only. From the early 1960s, Hägglunds developed a number of its own tracked vehicles, all of which were influenced by the mobility demands dictated by their intended use in severe terrain conditions, such as those found in Northern Scandinavia. This paper presents a brief history of the advancement of tracked vehicle technology at Hägglunds Vehicle AB. The concepts discussed include: ground pressure, the number of road-wheels, articulated steering, track tension, track attack angle, sinkage, belly effects, and the use of terramechanic simulation. The success of the CV90 demonstrates that the combination of practical experience, terrain knowledge, and terramechanic simulations can effect substantial improvements in vehicle mobility. Evaluation of the CV90 versus other modern combat vehicles of the same class has shown that the CV90 possesses considerably higher mobility and speed under severe terrain conditions. These two attributes provide CV90 with the ability to access terrain that similar vehicles cannot, thus giving the military user greater mobility options.  相似文献   

14.
This paper reviews methods currently used to predict the pressure exerted by a wheeled vehicle on the ground. It describes a programme of experiments designed to measure the pressure at a certain depth in a soil mass, the surface of which is traversed by a number of different vehicles in a range of loading conditions. Methods for inferring the surface pressure from underground measurements are described and compared. The inferred surface pressures are then compared with predicted values. A discussion is given on the usefulness and validity of ground pressure characterisation for wheeled vehicles.  相似文献   

15.
The 1st European Conference of ISTVS held at Rottach-Egern in 1980 is used as the starting point for a review of the state-of-the-art in the design of agricultural vehicles. The functions of these vehicles are divided into three main categories: soil processing, load carrying and self-propulsion. The limitations on design in each of these areas are defined and the relevant papers to the 7th International Conference are discussed in this context. It is concluded that there is still a requirement for the development of lighter, higher speed vehicles with low ground pressure, adequate ground clearance and good suspension. In parallel with the development of this hardware, computer simulation and modelling techniques should be developed to facilitate evaluation of new designs on the drawing board.  相似文献   

16.
A military vehicle’s ability to traverse soft soil is a significant aspect of its performance. It is therefore important to be able to accurately predict and compare the soft soil performance of wheeled and tracked vehicles. The paper compares the vehicle cone index (VCI) model used in the NATO Reference Mobility Model (NRMM) with the mean maximum pressure (MMP) and vehicle limiting cone index (VLCI) models. The wheeled vehicle models compare reasonably well but the VLCI model for tracked vehicles indicates markedly higher limiting go/no-go soil strengths compared to the VCI and MMP models. Some of the relationships used in the VCI model appear rather irrational and could be significantly simplified. There is a considerable lack of reliable experimental data for tracked vehicles especially in the low traction region.  相似文献   

17.
A general purpose vehicle dynamics modelling capability is described. The development of suspension system superelements as standard elements in a general multi-body dynamics program is discussed. Terrain interaction models for wheeled vehicles with deformable tires operating on rigid pavement are described. A track vehicle suspension superelement is also described that includes a loop force element model of tracks and the use of terramechanical relations to describe soil compliance.  相似文献   

18.
Sea ice pressure ridges are major obstacles to vehicle mobility in the Arctic Basin. An estimate of the expectation of holes of various heights and widths in the ridges is desirable for optimum vehicle design. This study uses probability theory and ridge shadow measurements from aerial photographs of sea ice to determine the distribution of holes of various heights and widths in pressure ridges. General conclusions are drawn regarding trafficability of this terrain for vehicles of various sizes.  相似文献   

19.
Nowadays the requirements on off-road vehicles are rising steadily. The ideal vehicle has to provide excellent off-road capability with low fuel consumption, offer a high customizability for each specific mission and, last but not least, it has to be easy to operate. To meet these demands, on the development side a lot of parameter studies have to be carried out. The customer has to compare offers from a multiplicity of suppliers to decide which vehicle fulfills the designated mission task best. And finally, the operator needs the best training on the vehicle to cope with all possible situations in off-road mobility. In response to these needs, the presented simulation program WinMaku was developed to offer a tool to facilitate development, procurement and operator training. Exemplary simulation results show, on the one hand, the influence of specific design parameters, e.g. tire size, engine power, torque characteristics, gear shifting, and engine working conditions, and on the other hand the (beneficial or adverse) effects of operational parameters like driving with maximum/partial engine load, gear selection, engine speed, tire inflation pressure or track tension, on mobility performance. Furthermore results of vehicle comparison analysis are presented. These types of analysis show comparisons of mobility performance of different vehicle types or vehicle concepts (e.g. wheel vs. track) in fulfilling a certain mission profile, characterized by passing a sequence of different soils with various inclines. Endowed with such capability, the presented simulation tool serves as a training tool for operators, provides a cost effective method to assess possible development steps, allows customers to run a pre-selection process prior to expensive and time-consuming field tests, and finally supports mission planning by providing data like expected fuel consumption or time needed to pass a certain mission profile.  相似文献   

20.
In the past, the task of evaluating soft-ground mobility of off-road vehicles has been carried out primarily using empirical methods (or models), such as the NATO Reference Mobility Model (NRMM) or the Rowland method based on the mean maximum pressure (MMP). The databases for these empirical methods were mostly established decades ago. Consequently, in many cases, they cannot be used in evaluating new generations of vehicles with new design features, as the mobility of these vehicles simply cannot be described within the limits of these empirical databases.Since the 1980s, a series of comprehensive and realistic simulation models for design and performance evaluation of off-road vehicles has emerged. They are based on the detailed studies of the physical nature of vehicle-terrain interaction, taking into account all major vehicle design features and pertinent terrain characteristics. This paper describes the application of one of these models, known as NTVPM-86, developed by Vehicle Systems Development Corporation, Canada, to the design and development of a new version of the ASCOD infantry fighting vehicle, produced by a joint venture formed by Empresa Nacional Santa Barbara of Spain and Steyr-Daimler-Puch of Austria. The results of field tests performed by the Military Technology Agency, Ministry of Defence, Vienna, Austria and released recently confirm that, as predicted by the NTVPM-86 model, the new version of the ASCOD has much improved performance than the original over soft terrain, including soft clay and snow-covered terrain. This is another example of the successful application of the NTVPM-86 model to the design and development of a new generation of high-speed tracked vehicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号