首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel type of bioreducible amphiphilic multiarm hyperbranched copolymer (H40-star-PLA-SS-PEG) based on Boltorn® H40 core, poly(l-lactide) (PLA) inner-shell, and poly(ethylene glycol) (PEG) outer-shell with disulfide-linkages between the hydrophobic and hydrophilic moieties was developed as unimolecular micelles for controlled drug release triggered by reduction. The obtained H40-star-PLA-SS-PEG was characterized in detail by nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), gel permeation chromatography (GPC), differential scanning calorimeter (DSC), and thermal gravimetric analysis (TGA). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analyses suggested that H40-star-PLA-SS-PEG formed stable unimolecular micelles in aqueous solution with an average diameter of 19 nm. Interestingly, these micelles aggregated into large particles rapidly in response to 10 mM dithiothreitol (DTT), most likely due to shedding of the hydrophilic PEG outer-shell through reductive cleavage of the disulfide bonds. As a hydrophobic anticancer model drug, doxorubicin (DOX) was encapsulated into these reductive unimolecular micelles. In vitro release studies revealed that under the reduction-stimulus, the detachment of PEG outer-shell in DOX-loaded micelles resulted in a rapid drug release. Flow cytometry and confocal laser scanning microscopy (CLSM) measurements indicated that these DOX-loaded micelles were easily internalized by living cells. Methyl tetrazolium (MTT) assay demonstrated a markedly enhanced drug efficacy of DOX-loaded H40-star-PLA-SS-PEG micelles as compared to free DOX. All of these results show that these bioreducible unimolecular micelles are promising carriers for the triggered intracellular delivery of hydrophobic anticancer drugs.  相似文献   

2.
We have designed copolymers of N-isopropylacrylamide, environmentally-responsive polymers, which respond to temperature and other external stimuli. In this study, we designed and synthesized copolymers that introduced ion-exchange groups. These copolymers responded to the temperature and the pH, and the copolymer-grafted aminopropyl silica beads were used as HPLC packing materials. This stationary phase altered the properties from hydrophilic to hydrophobic and from charge to non-charge by temperature and pH changes. We studied the separations of organic acids and phenylthiohydantoin-amino acids using environmentally-responsive chromatography, and confirmed the effects of the ion-exchange groups. The elution behaviors of these samples were controlled by the temperature changes without organic solvents in the mobile phase. It was confirmed that the interactions between the solute and stationary phase could be freely controlled by the temperature and the pH. Environmentally-responsive chromatography is expected to be applicable to the separation of pharmaceuticals and biomolecules, such as peptides, proteins and nucleic acids.  相似文献   

3.
Graft copolymers of 2-(dimethylamino)ethylmethacrylate (DMAEMA) and acrylic acid (AAc) onto polypropylene films were investigated for obtaining a pH- and thermo-sensitive material. DMAEMA and AAc were grafted by direct irradiation and pre-irradiation methods, respectively, using a 60Co γ-source. Due to the acidic and basic nature of the monomers, this novel copolymer corresponds to the class of polyzwitterions. Their behavior was studied in presence of different buffer solutions from pH 2 to 12 for different grafting percentages (from 9 to 362%) of AAc and keeping the DMAEMA grafting percentage constant. These modified films showed the same critical pH point at 7.6 in a range of temperatures from 23 to 37 °C. The swelling percentage showed a dependence on AAc content and pH. The lower critical solution temperature was observed at 36 °C when AAc content was less than 30% of grafting. The grafted films were characterized by swelling behavior, FTIR-ATR and UV–Vis spectrometry for study of loading and release of vancomycin as a model drug at room temperature.  相似文献   

4.
Phase transition behavior of unimolecular dendritic three-layer nanostructures with dual thermoresponsive coronas is studied. Successive reversible addition-fragmentation transfer (RAFT) polymerizations of N-isopropylacrylamide (NIPAM) and 2-(dimethylamino)ethyl methacrylate (DMA) were conducted using fractionated fourth-generation hyperbranched polyester (Bolton H40) based macroRAFT agent. At lower temperatures (<20 degrees C), dendritic macromolecules H40-poly(N-isopropylacrylamide)-poly(2-(dimethylamino)ethyl methacrylate) (H40-PNIPAM-PDMA) exist as unimolcular core-shell-corona nanostructures with hydrophobic H40 as the core, swollen PNIPAM as the inner shell, and swollen PDMA as the corona. PNIPAM and PDMA homopolymers undergo phase transitions at their lower critical solution temperatures (LCST), which are found to be 32 degrees C for PNIPAM and 40-50 degrees C for PDMA, respectively. Upon continuously heating through the LCSTs of PNIPAM and PDMA, such dendritic unimolecular micelles exhibit two-stage thermally induced collapse. This process is reversible with a two-stage reswelling upon cooling. Laser light scattering, micro-differential scanning calorimetry, and excimer fluorescence measurements are used to investigate the double phase transitions.  相似文献   

5.
Quenching and product studies have been performed to demonstrate the suitability of hyperbranched polyethers with a tetrafunctionalized benzophenone core as photocatalysts. The triplet photosensitized transformation of an unsaturated diazo compound has been used as the model reaction. The polymer with highest molecular weight led to a similar product distribution even after several catalytic cycles, which evidences its excellent photostability under prolonged irradiation time. We attribute this to the stabilizing effect of the hyperbranched polymer shell.  相似文献   

6.
双亲水性超支化接枝共聚物的pH响应性药物释放   总被引:3,自引:0,他引:3  
首先利用阳离子开环聚合合成了超支化聚缩水甘油醚(HPG),然后通过酯化反应制备了低接枝率的大分子引发剂HPG-Br,并进一步引发甲基丙烯酸-2-(N,N-二甲氨基)乙酯(DMAEMA)单体的原子转移自由基聚合,合成了低接枝率的双亲水性超支化接枝共聚物HPG-g-PDMAEMA,用1HNMR和GPC对聚合物结构进行了表征.并采用芘荧光探针法,HNMR和DLS研究了HPG-g-PDMAEMA在不同pH水溶液中的组装行为.以1香豆素102为模型药物研究了HPG-g-PDMAEMA聚合物在不同pH条件下的药物释放行为,发现在pH连续振荡刺激下HPG-g-PDMAEMA聚合物胶束对药物分子能实现部分"可逆"的释放和再包载.  相似文献   

7.
In this paper, we report the synthesis and self-assembly of double-hydrophilic hyperbranched graft copolymers of HPG-g-PDMAEMA, which consist of a hyperbranched polyglycerol (HPG) core and several grafted poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) arms. HPG was synthesized by cationic polymerization. Then HPG-Br macroinitiator was obtained by esterification of HPG with 2-bromoisobutyryl bromide, which was subsequently used in the preparation of HPG-g-PDMAEMA graft copolymers through atom transfer r...  相似文献   

8.
Ryu EH  Zhao Y 《Organic letters》2004,6(18):3187-3189
[structure: see text] When four facially amphiphilic cholate derivatives are attached to a tetraaminocalixarene scaffold, the resulting molecule responds to environmental changes by rotation of the cholate units. In polar solvents, the molecule adopts a micellelike conformation with the hydrophilic alpha-faces of the cholates pointing outward. In nonpolar solvents, it turns inside out, assuming a reversed micellelike conformation with the hydrophobic beta-faces pointing outward. Switching between the two conformations is driven by solvophobic interactions and is fully reversible.  相似文献   

9.
This paper describes the preparation, characterization, and enzymatic activity of complex coacervate core micelles (C3Ms) composed of poly(acrylic acid) (PAA) and poly(N-methyl-2-vinyl pyridinium iodide)-b-poly(ethylene oxide) (PQ2VP-PEO) to which the antibacterial enzyme lysozyme is end-attached. C3Ms were prepared by polyelectrolyte complex formation between PAA and mixtures containing different ratios of aldehyde and hydroxyl end-functionalized PQ2VP-PEO. This resulted in the formation of C3Ms containing 0-40% (w/w) of the aldehyde end-functionalized PQ2VP-PEO block copolymer (PQ2VP-PEO-CHO). Chemical conjugation of lysozyme was achieved via reductive amination of the aldehyde groups, which are exposed at the surface of the C3M, with the amine groups present in the side chains of the lysine residues of the protein. Dynamic and static light scattering indicated that the conjugation of lysozyme to C3Ms prepared using 10 and 20% (w/w) PQ2VP-PEO-CHO resulted in the formation of unimicellar particles. Multimicellar aggregates, in contrast, were obtained when lysozyme was conjugated to C3Ms prepared using 30 or 40% (w/w) PQ2VP-PEO-CHO. The enzymatic activity of the unimicellar lysozyme-C3M conjugates toward the hydrolysis of the bacterial substrate Micrococcus lysodeikticus was comparable to that of free lysozyme. For the multimicellar particles, in contrast, significantly reduced enzymatic rates of hydrolysis, altered circular dichroism, and red-shifted tryptophan fluorescence spectra were measured. These results are attributed to the occlusion of lysozyme in the interior of the multimicellar conjugates.  相似文献   

10.
The structure of grafted adsorbing polymers on surfaces is described as a statistical ensemble of loops generated by an one-dimensional random walk perpendicular to the surface. The configuration of each chain is considered as a succession of closed loops ended by an open loop (a tail). The probability of formation of each individual loop is the product between the probability of first return to the surface and a Boltzmann factor containing the free energy of the Flory-Huggins kind, which is approximated by the minimum free energy of all possible configurations of that loop. At high grafting densities, the attractive interactions between monomers and surface control the fraction of polymer belonging to either closed loops or tails, hence the formation of a stretched grafted brush. At low grafting densities, the increase of that interaction above a critical value generates an abrupt collapse of the brush on the surface. Whereas for long polymers (with more than about 100 Kuhn segments), the structure of the brush can be determined, in general, only via Monte-Carlo sampling, it is argued that the two structural transitions indicated above can be well predicted by simple approximations.  相似文献   

11.
A novel biodegradable unimolecular reversed micelle consisting of a poly(L ‐lactide) (PLA) shell and a hyperbranched D ‐mannan (HBM) core, that is, a chestnut‐shaped polymer (PLA–HBM), was synthesized by the polymerization of L ‐lactide on HBM with 4‐(dimethylamino)pyridine (DMAP) as the catalyst. The obtained polymers were soluble in dimethyl sulfoxide, tetrahydrofuran, and chloroform but insoluble in H2O. The molecular weights of the PLA chain on PLA–HBM tended to increase with increasing polymerization time. The number of PLA chains on PLA–HBM could be controlled by the ratio of DMAP to the sugar unit in HBM. The obtained copolymer, PLA–HBM, acted as a unimolecular reversed micelle with an encapsulation ability toward the hydrophilic molecule. In addition, the entrapped hydrophilic molecules were slowly released from the core of PLA–HBM, and the release rate was accelerated by the breaking of the PLA chains of the shell when proteinase K as a hydrolase of PLA was used. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 406–413, 2006  相似文献   

12.
Polythiophene nanoparticles (PTNs), as one of the typical conjugated polymer nanoparticles (CPNs) with novel optical and electronic properties have won extensive attentions, especially their applications in electronics and bioimaging. However, PTNs obtained with traditional methods are usually nonuniform or unstable. Herein, we developed a novel method to prepare uniform and stable PTNs templated from star‐like unimolecular micelles. Cyclodextrin‐cored unimolecular micelles with tailored components were prepared through atom transfer radical polymerization, and PTNs with plain or hollow nanostructures can be obtained via crosslinking the suspended thiophene units in designed domain of unimolecular micelles. The unimolecular micelles and PTNs were characterized via nuclear magnetic resonance, Fourier transform infrared, transmission electron microscopy, atomic force microscopy, dynamic light scattering, ultraviolet–visible, and photoluminescence, indicating that the PTNs exhibit uniform size, controllable surface chemistry, and well‐defined nanostructures. The obtained PTNs have potential applications in optics, electronics, and bioimaging. Also, this provides a new way to synthesize CPNs with tailored sizes, nanostructures, and surface chemistry. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1550–1555  相似文献   

13.
This paper describes the double phase transition behavior of a thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) brush at the surface of a hydrophobic core. Reversible addition-fragmentation transfer (RAFT) polymerization of N-isopropylacrylamide (NIPAM) was conducted by using a hyperbranched polyester (Boltorn H40) based macroRAFT agent. The resultant multiarm star block copolymer (H40-PNIPAM) exists as unimolecular micelles with hydrophobic H40 as the core, densely grafted PNIPAM brush as the shell. A combination of laser light scattering (LLS) and microdifferential scanning calorimetry (micro-DSC) studies of H40-PNIPAM in aqueous solution reveals double phase transitions of the PNIPAM corona, which is in contrast to the fact that free PNIPAM homopolymer in aqueous solution exhibits a lower critical solution temperature (LCST) at approximately 32 degrees C. The first phase transition takes place in the broad temperature range 20-30 degrees C, which can be tentatively ascribed to the n-cluster-induced collapse of the inner region of the PNIPAM brush close to the H40 core; the second phase transition occurs above 30 degrees C, which can be ascribed to the outer region of PNIPAM brush. Employing the RAFT chain extension technique, the inner and outer part of PNIPAM brush were then selectively labeled with pyrene derivatives, respectively; temperature-dependent excimer fluorescence measurements further support the conclusion that the inner part of PNIPAM brush collapses first at lower temperatures, followed by the collapse of the outer part at higher temperatures.  相似文献   

14.
Mixed polymer micelles with hydrophobic polystyrene (PS) core and ionic amphiphilic poly(4-vinylpyridine)/poly(N-ethyl-4-vinylpyridinium bromide) corona (P4VP/PEVP) spontaneously self-assembled from mixtures of PS-b-PEVP and PS-b-P4VP macromolecules in dimethylformamide/methanol/water selective solvent. The fraction of PEVP units in corona was β = [PEVP]/([PEVP] + [P4VP]) = 0.05-1.0. Micelles were transferred into pure water via dialysis technique and pH was adjusted to 9, where P4VP blocks are insoluble. Structural characteristics of micelles as a function of corona composition β were investigated. Methods of dynamic and static light scattering, electrophoretic mobility measurements, sedimentation velocity, transmission electron microscopy, and UV spectrophotometry were applied. Spherical morphology with core (PS)-shell (P4VP)-corona (PEVP) organization was postulated. Micelles demonstrated a remarkable inflection in structural characteristics near β ~ 0.5-0.7. Above this region, aggregation number (m), core and corona radii of mixed micelles coincided with those of individual PS-b-PEVP micelles. When β decreased below 0.5, dramatic growth of aggregation number was observed, accompanied by growth in micelle size and stretching PEVP chains. At β below 0.2, dispersions of mixed micelles were unstable and easily precipitated upon addition of NaCl. Scaling relationships between micelle characteristics and β were obtained via minimization the micelle free energy, taking into account electrostatic, osmotic, volume, and surface contributions. Theoretical estimations predicted dramatic influence of β on aggregation number, m ~ β(-3). This result is in general agreement with experimental data and confirms the correctness of the core-shell-corona model. The inflection in micelle characteristics entails drastic changes in micelle dispersion stability in the presence of oppositely charged polymeric (sodium polymethacrylate) or amphiphilic (sodium dodecyl sulfate) complexing agents.  相似文献   

15.
In aqueous solutions at room temperature, poly( N-methyl-2-vinyl pyridinium iodide)- block-poly(ethylene oxide), P2MVP 38- b-PEO 211 and poly(acrylic acid)- block-poly(isopropyl acrylamide), PAA 55- b-PNIPAAm 88 spontaneously coassemble into micelles, consisting of a mixed P2MVP/PAA polyelectrolyte core and a PEO/PNIPAAm corona. These so-called complex coacervate core micelles (C3Ms), also known as polyion complex (PIC) micelles, block ionomer complexes (BIC), and interpolyelectrolyte complexes (IPEC), respond to changes in solution pH and ionic strength as their micellization is electrostatically driven. Furthermore, the PNIPAAm segments ensure temperature responsiveness as they exhibit lower critical solution temperature (LCST) behavior. Light scattering, two-dimensional 1H NMR nuclear Overhauser effect spectrometry, and cryogenic transmission electron microscopy experiments were carried out to investigate micellar structure and solution behavior at 1 mM NaNO 3, T = 25, and 60 degrees C, that is, below and above the LCST of approximately 32 degrees C. At T = 25 degrees C, C3Ms were observed for 7 < pH < 12 and NaNO 3 concentrations below approximately 105 mM. The PEO and PNIPAAm chains appear to be (randomly) mixed within the micellar corona. At T = 60 degrees C, onion-like complexes are formed, consisting of a PNIPAAm inner core, a mixed P2MVP/PAA complex coacervate shell, and a PEO corona.  相似文献   

16.
In this study, three kinds of amphiphilic block copolymers, termed MPEG-block-PDMMA, MPEG-block-PCPMA, and MPEG-block-PMPMA, which were composed of one hydrophilic monomethoxy poly(ethylene glycol) (MPEG) block and one hydrophobic polyacrylate block bearing pendant six-member cyclic ketal groups, were synthesized by atom transfer radical polymerization (ATRP). These polymers can disperse in aqueous media to self-assemble into micellar aggregates with a spherical core-shell structure with mean diameter below 300 nm. The stimuli-responsiveness of polymeric micelles from MPEG-block-PDMMA was detected by fluorescence-probe technique at pH 3.5 and 37 °C. The effect of chemical architecture and composition of the polymers on the pH-responsive properties of polymeric micelles was also studied. A combination of pH and temperature to trigger release behavior of these polymeric micelles was discussed by comparing the encapsulated molecule release ability under various pH and temperature conditions and analyzing chemical structural changes of the polymer before and after the triggering.  相似文献   

17.
Multi-arm star polystyrenes with hyperbranched poly(3-ethyl-3-oxetanemethanol) (PEOM, 3) core were synthesized by atom transfer radical polymerization (ATRP) method. The structures of polymers were confirmed by FT-IR and 1H NMR. GPC results showed that the resultant polymers had relatively low polydispersity indices (PD = 1.47-2.03). DSC analysis indicated that polystyrene star polymers had a glass transition temperature (Tg = 42.2-91.5 °C) that changed with the amount of the polystyrene in the polymers. In addition, the aggregation behavior of the multi-arm star polystyrenes in a selective solvent (THF/cyclohexane) was probed with polystyrene arms that encapsulated in the aggregates and PEOM cores hidden in the center of the micelles.  相似文献   

18.
We report a method for synthesizing small-diameter ZnO nanorods at room temperature (20 °C), under normal atmospheric pressure (1 atm), and using a relatively short reaction time (1 h) by adding gallium salts to the reaction solution. The ZnO nanorods were, on average, 92 nm in length and 9 nm in diameter and were single crystalline in nature. Quantitative analyses revealed that gallium atoms were not incorporated into the synthesized nanocrystals. On the basis of the experimental results, we propose a mechanism for the formation of small-diameter ZnO nanorods in the presence of gallium ions. The optical properties were probed by UV-Vis diffuse reflectance spectroscopy. The absorption band of the small-diameter ZnO nanorods was blue-shifted relative to the absorption band of the ~230 nm diameter ZnO nanorods (control samples). Control experiments demonstrated that the absence of metal ion-containing precipitants (except ZnO) at room temperature is essential, and that the ZnO nanorod diameter distributions were narrow for the stirred reaction solution and broad when prepared without stirring.  相似文献   

19.
The star-shaped poly(ε-caprolactone)-b-poly(2-(dimethylamino)ethyl methacrylate) (HPs-Star-PCL-b-PDMAEMA) was synthesized by ring-opening polymerization and reversible addition-fragmentation chain transfer (RAFT) polymerization. Star-shaped polycaprolactones (HPs-Star-PCL) were synthesized by the bulk polymerization of ε-caprolactone (CL) with a hyperbranched polyester initiator and tin 2-ethylhexanoate as a catalyst. The number-average molecular weight of these polymers linearly increased with the increase of the molar ratio of CL to hyperbranched initiator. HPs-Star-PCL was converted into a HPs-star-PCL-RAFT by an esterification of HPs-Star-PCL and 4-cyanopentanoic acid dithiobenzoate. Star amphiphilic block copolymer HPs-Star-PCL-b-PDMAEMA was obtained via RAFT polymerization of 2-(dimethylamino)ethyl methacrylate (DMAEMA). The molecular weight distribution of HPs-Star-PCL-b-PDMAEMA was narrow. Furthermore, the micellar properties of HPs-Star-PCL-b-PDMAEMA in water were studied at various temperatures and pH values by means of dynamic light scattering (DLS). The results indicated that the star copolymers had the pH- and temperature-responsive properties. The release behaviors of model drug aspirin from the star polymer indicated that the rate of drug release could be effectively controlled by pH value and temperature.  相似文献   

20.
An amphiphilic, hyperbranched polymer suitable for use in controlled drug delivery is reported. This polymer was obtained by modification of the hyperbranched aliphatic polyester Boltorn H20 (H20) with succinic anhydride and then glycidyl methacrylate, and formed nanoparticles in aqueous solution. The critical association concentration was 7.4 x 10(-3) g . L(-1), as determined by fluorescence spectroscopy using pyrene as a molecular probe. A static/dynamic laser light scattering (LLS) study revealed that the average particle size was 39.4 nm with a low particle size distribution (PDI=0.04), and that each particle was composed of about 350 amphiphilic molecules. Daidzein, a hydrophobic traditional Chinese medicine, was encapsulated during particle formation and the release properties were determined. The optimal feeding concentration of daidzein to hyperbranched polyester was 4.9 x 10(-5) g . mL(-1) to 5.0 x 10(-3) g . mL(-1) with a loading efficiency of 76.1%. In the presence of the enzyme Lipase PS, the drug loaded nanoparticles degraded in a random one-by-one manner and released the drug over a few days. This system is therefore a novel controlled drug release system based on nanoparticles formed of hyperbranched polyester. Encapsulation of daidzein by hyperbranched polyester particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号