首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The calcium sensing receptor (CaSR) plays an important role for sensing local changes in the extracellular calcium concentration ([Ca(2+)](o)) in bone remodeling. Although the function of CaSR is known, the regulatory mechanism of CaSR remains controversial. We report here the regulatory effect of caveolin on CaSR function as a process of CaSR regulation by using the human osteosarcoma cell line (Saos-2). The intracellular calcium concentration ([Ca(2+)](i)) was increased by an increment of [Ca(2+)](o). This [Ca(2+)](i) increment was inhibited by the pretreatment with NPS 2390, an antagonist of CaSR. RT-PCR and Western blot analysis of Saos-2 cells revealed the presence of CaSR, caveolin (Cav)-1 and -2 in both mRNA and protein expressions, but there was no expression of Cav-3 mRNA and protein in the cells. In the isolated caveolae-rich membrane fraction from Saos-2 cells, the CaSR, Cav-1 and Cav-2 proteins were localized in same fractions (fraction number 4 and 5). The immuno-precipitation experiment using the respective antibodies showed complex formation between the CaSR and Cav-1, but no complex formation of CaSR and Cav-2. Confocal microscopy also supported the co-localization of CaSR and Cav-1 at the plasma membrane. Functionally, the [Ca(2+)](o)-induced [Ca(2+)](i) increment was attenuated by the introduction of Cav-1 antisense oligodeoxynucleotide (ODN). From these results, in Saos-2 cells, the function of CaSR might be regulated by binding with Cav-1. Considering the decrement of CaSR activity by antisense ODN, Cav-1 up-regulates the function of CaSR under normal physiological conditions, and it may play an important role in the diverse pathophysiological processes of bone remodeling or in the CaSR-related disorders in the body.  相似文献   

2.
Nanosecond electric pulse-induced calcium entry into chromaffin cells   总被引:1,自引:0,他引:1  
Electrically excitable bovine adrenal chromaffin cells were exposed to nanosecond duration electric pulses at field intensities ranging from 2 MV/m to 8 MV/m and intracellular calcium levels ([Ca(2+)](i)) monitored in real time by fluorescence imaging of cells loaded with Calcium Green. A single 4 ns, 8 MV/m pulse produced a rapid, short-lived increase in [Ca(2+)](i), with the magnitude of the calcium response depending on the intensity of the electric field. Multiple pulses failed to produce a greater calcium response than a single pulse, and a short refractory period was required between pulses before another maximal increase in [Ca(2+)](i) could be triggered. The pulse-induced rise in [Ca(2+)](i) was not affected by depleting intracellular calcium stores with caffeine or thapsigargin but was completely prevented by the presence of EGTA, Co(2+), or the L-type calcium channel blocker nitrendipine in the extracellular medium. Thus, a single nanosecond pulse is sufficient to elicit a rise in [Ca(2+)](i) that involves entry of calcium via L-type calcium channels.  相似文献   

3.
The local atomic environment of Ca in (CaO)x(SiO2)1-x glasses is of interest because of the role of Ca in soda-lime glass, the application of calcium silicate glasses as biomaterials, and the previous experimental measurement of the Ca-Ca correlation in CaSiO(3) glass. Molecular dynamics has been used to obtain models of (CaO)x(SiO2)1-x glasses with x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5, and with approximately 1000 atoms and size approximately 25 A. As expected, the models contain a tetrahedral silica network, the connectivity of which decreases as x increases. In the glass-forming region, i.e., x = 0.4 and 0.5, Ca has a mixture of 6- and 7-fold coordination. Bridging oxygen makes an important contribution to the coordination of Ca, with most bridging oxygens coordinated to 2 Si plus 1 Ca. The x = 0.5 model is in reasonable agreement with previous experimental studies, and does not substantiate the previous theory of cation ordering, which predicted Ca arranged in sheets. In the phase-separated region, i.e., x = 0.1 and 0.2, there is marked clustering of Ca.  相似文献   

4.
Photorelease of caged Ca(2+) is a uniquely powerful tool to study the dynamics of Ca(2+)-triggered exocytosis from individual cells. Using photolithography and other microfabrication techniques, we have developed transparent microchip devices to enable photorelease of caged Ca(2+), together with electrochemical detection of quantal catecholamine secretion from individual cells or cell arrays as a step towards developing high-throughput experimental devices. A 100 nm thick transparent indium-tin-oxide (ITO) film was sputter-deposited onto glass coverslips, which were then patterned into 24 cell-sized working electrodes (approximately 20 microm by 20 microm). We loaded bovine chromaffin cells with acetoxymethyl (AM) ester derivatives of the Ca(2+) cage NP-EGTA and Ca(2+) indicator dye fura-4F, then transferred these cells onto the working ITO electrodes for amperometric recordings. Upon flash photorelease of caged Ca(2+), a uniform rise of [Ca(2+)](i) within the target cell leads to quantal release of oxidizable catecholamines measured amperometrically by the underlying ITO electrode. We observed a burst of amperometric spikes upon rapid elevation of [Ca(2+)](i) and a "priming" effect of sub-stimulatory [Ca(2+)](i) on the response of cells to subsequent [Ca(2+)](i) elevation, similar to previous reports using different techniques. We conclude that UV photolysis of caged Ca(2+) is a suitable stimulation technique for higher-throughput studies of Ca(2+)-dependent exocytosis on transparent electrochemical microelectrode arrays.  相似文献   

5.
The new phases Ca(3)Pt(4+x)Ge(13-y) (x = 0.1; y = 0.4; space group I2(1)3; a = 18.0578(1) ?; R(I) = 0.063; R(P) = 0.083) and Yb(3)Pt(4)Ge(13) (space group P4(2)cm; a = 12.7479(1) ?; c = 9.0009(1) ?; R(I) = 0.061, R(P) = 0.117) are obtained by high-pressure, high-temperature synthesis and crystallize in new distortion variants of the Pr(3)Rh(4)Sn(13) type. Yb(3)Pt(4)Ge(13) features Yb in a temperature-independent non-magnetic 4f(14) (Yb(2+)) configuration validated by X-ray absorption spectra and resonant inelastic X-ray scattering data. Ca(3)Pt(4+x)Ge(13-y) is diamagnetic (χ(0) = -5.05 × 10(-6) emu mol(-1)). The Sommerfeld coefficient γ = 4.4 mJ mol(-1) K(-2) for Ca(3)Pt(4+x)Ge(13-y), indicates metallic properties with a low density of states at the Fermi level in good agreement with electronic structure calculation (N(E(F)) = 3.3 eV(-1)/f.u.)); the Debye temperature (θ(D)) is 398 K.  相似文献   

6.
Robust monolithic silica-based on-chip electro-osmotic micro-pump   总被引:1,自引:0,他引:1  
Nie FQ  Macka M  Barron L  Connolly D  Kent N  Paull B 《The Analyst》2007,132(5):417-424
A robust, compact, on-chip, electro-osmotic micro-pump (EOP) for micro-flow analysis, based on parallel, encased, 10 x 0.1 mm I.D. monolithic silica capillary columns has been developed. A 15 x 40 x 2 mm poly(methyl methacrylate) (PMMA) chip, containing a total of nine parallel EOP systems was fabricated, allowing the use of single, double or triple monolithic columns to produce increased flow as required. The monolithic silica was compatible with both aqueous and organic solvents without swelling or shrinking problems, with the triple column EOP capable of generating flow of up to 0.6 microL min(-1) under zero pressure load and over 0.1 microL min(-1) with an applied pressure of ca. 2.4 bar using an applied voltage of just 2 kV. Current generated at the 2 kV applied voltage for a 2 mM acetate buffer solution (pH 4.5) was under 4 microA, allowing stable, bubble-free flow. The developed triple column EOP was incorporated within a micro-fluidic chip (5.0 x 2.0 x 0.4 cm) integrated with a second single 10 x 0.1 mm column EOP, for combined sample injection and simple on-chip micro-flow analysis.  相似文献   

7.
There is increasing concern about the degradation and metabolisation as well as the biochemical mechanisms of action of organometallic compounds. They are known to be immunotoxic and/or neurotoxic. Because of their different toxic capacities, the development of a reliable correlation between molecular parameters and biochemical effects, which could be helpful in risk assessment, was an aim of this study. The tested organolead and -tin compounds decrease the viability of human cells in culture in a time- and concentration-dependent manner. Parabolic QSAR(1)(1) The abbreviations used are: TMT, trimethyltin chloride; TET, triethyltin bromide; TPT, tripropyltin chloride; TBT, tri- n-butyltin chloride; DBT, di- n-butyltin dichloride; TEL, triethyllead chloride; DEL, diethyllead dichloride; TML, trimethyllead chloride; TPhL, triphenyllead chloride; QSAR, quantitative structure-activity relationships; TSA, total surface area; MW(ion), ionic molecular weight; fMLP, N-formyl-L-methionyl-L-leucyl-L-phenylalanine; fluo-3, fluo-3 free acid; fluo-3 AM, fluo-3 acetoxymethyl ester; Me(2)SO, dimethyl sulfoxide; PLA(2), phospholipase A(2) (EC 3.1.1.4); FCS, fetal calf serum; HEPES, 4-(2-hydroxy-ethyl)-1-piperazineethanesulfonic acid; EGTA, [ethylene-bis(oxyethylenenitrilo)]tetraacetic acid; [Ca(2+)](i), cytosolic free Ca(2+) concentration models yield an adequate correlation between toxicity expressed as LC(50) and structural parameters like ionic molecular weight (MW(ion)) or total surface area (TSA). Two main chemical attributes of the organometals are probably responsible for such a parabolic relationship: the hydrophobic side chain and the polar metal atom. Furthermore, all tested organometal compounds evoke a persistent increase of the cytosolic free calcium concentration [Ca(2+)](i). This effect is mainly due to an influx from the extracellular space. Further results suggest that Ca(2+) enters the cell via opened calcium channels. Based on the essential role of Ca(2+) within cellular signalling, the perturbation of calcium homeostasis appears to be an important event in final cell killing by organometals and it is most likely that other biochemical mechanisms, e.g. activation of phospholipase A(2), are possibly mediated by an increase of [Ca(2+)](i).  相似文献   

8.
A solvent-extraction system comprising toluene/ter-butanol (ter-BuOH) mixed solvent as the organic phase was developed to selectively extract Cr(VI) from acidic chloride media in the presence of divalent metals, namely Cd(II), Co(II), Cu(II), Ni(II) and Zn(II) under 5 M CaCl2 salting-out conditions. Chromium(VI) was selectively extracted as a solvated ion-pair of [ter-BuOH2+ x CrO3Cl-] at ter-BuOH mole fractions of between 0.1 and 0.6 (9.0-57.2% in volume). Divalent metals were extracted at ter-BuOH mole fraction over 0.6 with extraction percents of Co (< 20%), Cu (< 15%), Ni (< 10%) and Zn (< 20%). The concentrations of Ca2+, water and ter-BuOH in the organic phase and ter-BuOH in the aqueous phase were determined to find out the effects on the extraction of Cr(VI). The chemical species of Cr(VI) in acidic chloride media containing 5 M CaCl2 and 0.1 M HCl was confirmed to be the CrO3Cl- species. The effects of the acid, salt concentrations in the aqueous phase and the solvent composition of a mixed organic solvent on the extraction of Cr(VI) were evaluated. Based on the above studies, the extraction mechanism was elucidated and the optimum extraction conditions were determined.  相似文献   

9.
Generation of in vitro cellular assays using fluorescence measurements at heterologously expressed NMDA receptors would speed up the process of ligand characterization and enable high-throughput screening. The major drawback to the development of such assays is the cytotoxicity caused by Ca(2+)-flux into the cell via NMDA receptors upon prolonged activation by agonists present in the culture medium. In the present study, we established four cell lines with stable expression of NMDA receptor subtypes NR1/NR2A, NR1/NR2B, NR1/NR2C, or NR1/NR2D in BHK-21 cells. To assess the usefulness of the stable cell lines in conjunction with intracellular calcium ([Ca(2+)](i)) measurements for evaluation of NMDA receptor pharmacology, several ligands were characterized using this method. The results were compared to parallel data obtained by electrophysiological recordings at NMDA receptors expressed in Xenopus oocytes. This comparison showed that agonist potencies determined by [Ca(2+)](i) measurements and electrophysiological recordings correlated well, meaning that the stable cell lines in conjunction with [Ca(2+)](i) measurements provide a useful tool for characterization of NMDA receptor ligands. The agonist series of conformationally constrained glutamate analogues (2S,3R,4S)-alpha-(carboxycyclopropyl)glycine (CCG), 1-aminocyclobutane-r-1,cis-3-dicarboxylic acid (trans-ACBD), and (+/-)-1-aminocyclopentane-r-1,cis-3-dicarboxylic acid (cis-ACPD), as well as the highly potent agonist tetrazolylglycine were among the characterized ligands that were assessed with respect to subtype selectivity at NMDA receptors. However, none of the characterized agonists displays more than 2-3 fold selectivity towards a specific NMDA receptor subtype. Thus, the present study provides a broad pharmacological characterization of structurally diverse ligands at recombinant NMDA receptor subtypes.  相似文献   

10.
We have studied the ligand behavior of racemic isovalinate (iva) and valinate (val) towards zinc(II) and calcium(II). The following solid metal amino acidates were obtained from aqueous solutions: Zn3Cl2(iva)4 (1), Zn3Cl2(val)4 (2). Zn(val)2 (3), Zn(iva)2 x 2H2O (4), Zn(iva)2 x 3.25H2O (5), Zn(iva)2 (6), Ca(iva)2x xH2O (7), and Ca(val)2 x H2O (8). Except for complex 3, these were hitherto unknown compounds. The conditions under which they formed, together with current ideas of the conditions on early Earth, support the assumption that alpha-amino acidate complexes of zinc and calcium might have belonged to early Earth's prebiotic chemical inventory. The zinc isovalinates 1, 4, and 5 were characterized by X-ray crystal structure analyses. Complex 1 forms a layer structure containing four- and five-coordinate metal atoms, whereas the zinc atoms in 4 and 5 are five-coordinate. Compound 5 possesses an unprecedented nonpolymeric structure built from cyclic [Zn6(iva)12] complexes, which are separated by water molecules. The thermolyses of solids 1. 3, and 8 at 320 degrees C in an N2 atmosphere yielded numerous organic products, including the cyclic dipeptide of valine from 3 and 8. Condensation, C-C bond breaking and bond formation, aromatization, decarboxylation, and deamination reactions occurred during the thermolyses. Such reactions of metal-bound a-amino acidates that are abiotically formed could already have contributed to an organic-geochemical diversity before life appeared on Earth.  相似文献   

11.
胆盐与磷酸钙的相互作用   总被引:2,自引:0,他引:2  
胆汁的pH条件下(pH=6~8),应该生成无定形磷酸钙(ACP),而在胆结石中磷酸钙通常以羟基磷灰石的形式出现.利用谱学方法研究了ACP与胆盐的作用.结果表明,胆盐以胶团的形式与ACP作用,在溶液中形成复合胶团,使其溶解度增加.不同类型胆盐与ACP的作用能力不同:脱氧胆酸钠(NaDC) > 牛磺胆酸钠(NaTC) > 胆酸钠(NaC).胆盐与ACP中结合钙的亲和能力大于结合钙的亲和能力,使ACP在胆汁的环境下容易转化为羟基磷灰石.  相似文献   

12.
Density functional theory (Perdew-Burke-Ernzerhof) based methods have been used to study the structure and hydration environment of the building blocks of CaCO 3 in aqueous solutions of calcium bicarbonate and calcium carbonate. Car-Parrinello molecular dynamics simulations of Ca(2+)/CO3(2-) and Ca (2+)/HCO3(-) in explicit water were performed to investigate the formation of CaCO3 and the hydration shell of the solvated hetero-ion pair. Our simulations show that the formation of the monomer of CaCO3 occurs with an associative mechanism and that the dominant building block of calcium (bi)carbonate in aqueous solution is Ca[eta(1)-(H)CO3](H2O)5, i.e., the preferred hydration number is five, while the (bi)carbonate is coordinated to the calcium in a monodentate mode. This result agrees with static calculations, where a hybrid approach using a combination of explicit solvent molecules and a polarizable continuum model has been applied to compute the solvation free energies of calcium bicarbonate species. Furthermore, the discrete-continuum calculations predict that the Ca(HCO3)2 and Ca(HCO3)3(-) species are stable in an aqueous environment preferentially as Ca(HCO3)2(H2O)4 and Ca(HCO3)3(H2O)2(-), respectively.  相似文献   

13.
The structure of the hydrated calcium(II) ion in aqueous solution has been studied by means of extended X-ray absorption fine structure spectroscopy (EXAFS), large-angle X-ray scattering (LAXS), and molecular dynamics (MD) methods. The EXAFS data displayed a broad and asymmetric distribution of the Ca-O bond distances with the centroid at 2.46(2) A. LAXS studies on four aqueous calcium halide solutions (1.5-2 mol dm(-)(3)) gave a mean Ca-O bond distance of 2.46(1) A. This is consistent with a hydration number of 8 determined from correlations between mean distances and coordination numbers from crystal structures. The LAXS studies showed a second coordination sphere with a mean Ca.O(II) distance of 4.58(5) A, and for the hydrated halide ions the distances Cl.O 3.25(1) A, Br.O 3.36(1) A, and I.O 3.61(1) A were obtained. Molecular dynamics simulations of CaCl(2)(aq) were performed using three different Ca(2+)-OH(2) pair potentials. The potential from the GROMOS program gave results in agreement with experiments, i.e., a coordination number of 8 and an average Ca-O distance of 2.46 A, and was used for further comparisons. Theoretical EXAFS oscillations were computed for individual MD snapshots and showed very large variations, though the simulated average spectrum from 2000 snapshots gave satisfactory agreement with the experimental EXAFS spectra. The effect of thermal motions of the coordinated atoms is inherent in the MD simulation method. Thermal disorder parameters evaluated from simulated spatial atom distribution functions of the oxygen atoms coordinated to the calcium ion were in close agreement with those from the current LAXS and EXAFS analyses. The combined results are consistent with a root-mean-square displacement from the mean Ca-O distance of 0.09(2) A in aqueous solution at 300 K.  相似文献   

14.
In a search for environmentally friendly metal chelating ligands for industrial applications, the protonation and complex formation equilibria of N-tris[(1,2-dicarboxyethoxy)ethyl]amine (TCA6) with Ca(II), Mn(II), Cu(II) and Zn(II) ions in aqueous 0.1?M NaCl solution were studied at 25°C by potentiometric titration. A model for complexation and stability constants of the complexes were determined. With all of the metals, complex formation was dominated by ML4?. Comparison of TCA6 and six other chelating agents showed TCA6 to be suitable for applications where strong calcium binding is essential.  相似文献   

15.
The dissociation and complex formation equilibria between Ni(II) and Zn(II) with 3-(2-hydroxyphenyl)-2-mercaptopropenoic acid, at 25 degrees in aqueous 0.1 and 1.0M sodium perchlorate solutions, containing about 1% ethanol, have been studied spectrophotometrically. The data were connected directly from the spectrophotometer to an IBM-PC via a serial interface, using the DUMOD program (written in BASIC), described in the paper. The obtained spectra were treated by the factor analysis program NIPALS in order to determine the number of absorbing species and the experimental error. Dissociation constants of ligand (H(3)L), and formation constants for the complexes Ni(HL), Ni(HL)(2), Zn(HL) and Zn(HL)(2) at 0.1 and 1.0M ionic strengths, refined by the SQUAD program, are reported.  相似文献   

16.
使用改进的RD-1型热导式量热计测量了镍(II), 锌(II),钴(II)-N-(间甲苯基)亚氨基二乙酸-氮三乙酸三元配合物的生成焓, 发现其大小按金属离子来说符合Irving-William序列。利用配体的多环水化结构等讨论了该三元配合物的生成焓和相应的二元配合物的生成焓, 同时求得了上述三元体系的热力学参数, 指出上述三元体系的生成熵是导致这些三元体系具有较大稳定性的根本原因。  相似文献   

17.
6-Hydroxydopamine (6-OHDA) is a neurotoxin and is commonly used to generate experimental models of Parkinson's disease (PD). In this study, we investigated the signaling molecules involved in the 6-OHDA-induced cell death using a neuronal catecholaminergic cell line (SK-N-SH cells), and the protective effect of fustin, a flavonoid from Rhus verniciflua Stokes, on 6-OHDA-induced neuronal death. 6-OHDA significantly increased levels of reactive oxygen species (ROS), intracellular Ca(2+) ([Ca(2+)](i)), and p38 phosphorylation. In addition, this ROS increase by 6-OHDA was reduced by pretreatment with N-acetylcysteine (NAC), a free radical scavenger, but not by bis-(o-aminophenoxy)-ethane-N,N,N,N-tetraacetic acid (BAPTA), a Ca(2+) chelator. However, the [Ca(2+)](i) increase induced by 6-OHDA was suppressed by NAC. Moreover, pretreatment with NAC or BAPTA significantly prevented the 6-OHDA-induced increases in p38 phosphorylation, Bax/Bcl-2 ratio, and caspase-3 activity. Although 6-OHDA-increased phosphorylation of p38 was prevented by NAC or BAPTA, inhibition of p38 by SB203580 did not suppress ROS, Bax/Bcl-2 ratio, or caspase-3 activity increases, and only partially prevented 6-OHDA-induced cell death, thus demonstrating that p38 activation is a component of a signaling pathway leading to the initiation of 6-OHDA-induced cell death, which acts in parallel with an ROS-Ca(2+)-Bcl-2-caspase-3 pathway. Moreover, fustin not only suppressed 6-OHDA-induced cell death in a concentration-dependent manner but also blocked 6-OHDA-induced increases in ROS, [Ca(2+)](i), Bax/Bcl-2 ratio, caspase-3 activity, and p38 phosphorylation. These results suggest that fustin exerts neuroprotection against 6-OHDA-induced cell death.  相似文献   

18.
液质联用分析葛根提取物及中药片剂中异黄酮类化合物   总被引:10,自引:0,他引:10  
田宏哲  王华  关亚风 《色谱》2005,23(5):477-481
采用反相C18毛细管液相色谱柱,以乙腈(含0.1%(体积分数,下同)三氟乙酸)和水(含0.1%三氟乙酸)为流动相梯度洗脱,在26 min内分离了葛根异黄酮提取物以及愈风宁心片中的主要成分。采用毛细管液相色谱/四极杆飞行时间串联质谱仪对葛根提取物以及片剂中的几种主要异黄酮类化合物做了结构分析,发现葛根素是主成分(提取物中其平均质量分数是13.32%;片剂中每片含量19.28~24.34 mg)。对微量未知化合物,用它们的子离子谱图与已知化合物的谱图比较,推测其成分为3′-甲氧基葛根素和3′-甲氧基大豆苷。  相似文献   

19.
The well-defined structure of lipid A-diphosphate in aqueous solutions provides a way of observing the formation of calcium carbonate crystals. The crystals are either tetrahedral or rhombohedral calcite at a volume fraction of phi = 5.4 x 10 (-4) at pH 5.8 or the vaterite polymorph of CaCO(3) at a volume fraction of phi = 7.8 x 10 (-4) at pH 5.8. In both cases, nucleation, adsorption pH, and the shape-dependent template of lipid A-diphosphate control the formation of the calcite and vaterite.  相似文献   

20.
The kinetics and the equilibria of Ni(II) binding to p-hydroxybenzohydroxamic acid (PHBHA) and salicylhydroxamic acid (SHA) have been investigated in an aqueous solution at 25 degrees C and I=0.2 M by the stopped-flow method. Two reaction paths involving metal binding to the neutral acid and to its anion have been observed. Concerning PHBHA, the rate constants of the forward and reverse steps are k1=(1.9+/-0.1)x10(3) M-1 s-1 and k-1=(1.1+/-0.1)x10(2) s-1 for the step involving the undissociated PHBHA and k2=(3.2+/-0.2)x10(4) M-1 s-1 and k-2=1.2+/-0.2 s-1 for the step involving the anion. Concerning SHA, the analogous rate constants are k1=(2.6+/-0.1)x10(3) M-1 s-1, k-1=(1.3+/-0.1)x10(3) s-1, k2=(5.4+/-0.2)x10(3) M-1 s-1, and k-2=6.3+/-0.5 s-1. These values indicate that metal binding to the anions of the two acids concurs with the Eigen-Wilkins mechanism and that the phenol oxygen is not involved in the chelation. Moreover, a slow effect was observed in the SHA-Ni(II) system, which has been put down to rotation of the benzene ring around the C-C bond. Quantum mechanical calculations at the B3LYP/lanL2DZ level reveal that the phenol group in the most stable form of the Ni(II) chelate is in trans position relative to the carbonyl oxygen, contrary to the free SHA structure, where the phenol and carbonyl oxygen atoms both have cis configuration. These results bear out the idea that the complex formation is coupled with phenol rotation around the C-C bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号