首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vulcanization is a vital process in rubber processing, it endows rubber with valuable physical and mechanical properties, making rubber a widely used engineering material. In addition to vulcanization agent, reinforcing fillers play a non-ignorable influence on the vulcanization of rubber nanocomposites. Herein, the effects of cellulose nanocrystals (CNCs) on the vulcanization of natural rubber (NR)/CNCs nanocomposite was studied. It was found that even though the addition of CNCs can effectively improve the dispersion of ZnO in NR matrix, the vulcanization of NR was inhibited. This may be attributed to the CNCs' adsorption of vulcanizing agents (DM, ZnO) and the acidic chemical environment on the surface of CNCs. In order to improve the vulcanization properties of NR/CNCs nanocomposite, tetramethyldithiochloram (TMTD) and triethanolamine (TEOA) were used as a combination accelerator and curing activator, respectively, and polyethylene glycol (PEG) was introduced to screen hydroxyl groups on the surface of CNCs to prohibit the CNCs' adsorption of vulcanizing agents. The results indicate that TMTD and TEOA effectively improved the vulcanization rate of NR/CNCs nanocomposite and increased the crosslink density by an order of magnitude. Subsequently, the tensile strength, tear strength, and so forth. of NR/CNCs nanocomposite were significantly improved. However, PEG hardly help to improve the vulcanization properties of NR/CNCs nanocomposite. In addition, the control samples without CNCs were prepared and characterized, the comparation between NR and NR/CNCs nanocomposite shows that the synergistic effect of crosslink density and CNCs' reinforcement more effectively improve mechanical properties of NR. This work not only elucidates the inhibiting mechanisms of CNCs on the vulcanization of NR, but also provides practical strategies for improving the vulcanization and properties of NR/CNCs nanocomposite. It may accelerate the application of CNCs as rubber reinforcing filler.  相似文献   

2.
Sulphur was the first agent used to vulcanize commercial elastomers (e.g. natural rubber) and allows meaningful cost reductions during the industrial process (production cost ratio between peroxides and accelerated sulphur is around 5). Therefore, accelerated sulphur vulcanization is the most popular technique for the production of polydiene and EPDM elastomers items. At present, crosslinking mechanisms are not analytically known in detail, therefore reticulation kinetic has to be deduced from mechanical properties obtained during standardized tests, as for instance the oscillating disc rheometer. In the present paper, we propose a numerical model to fit experimental rheometer data based on a simple composite three functions curve, able to describe the increase of the viscosity at successive curing times at different controlled temperature to use during the production of thick items vulcanized with sulphur. It is believed that rheometer curve is able to give an indirect information on the rubber reticulation kinetic at different temperatures, to use in a successive step to establish simplified analytical kinetic formulas to adopt in the accelerated sulphur vulcanization of polydiene and EPDM elastomers. In the model, it is necessary to collect rheometer curves at different specimen temperatures, because vulcanization in industrial practice occurs at variable temperatures during curing, with considerable differences from the core to boundary of the item. Once that rheometer curves are suitably collected in a database, they are used to predict the optimal vulcanization of real items industrially produced. Finally, a so called alternating tangent approach (AT) is implemented to determine optimal input parameters (curing external temperature T n and rubber exposition time t) to use in the production process. Output mechanical property (objective function) to optimize is represented by the average tensile strength of the item. A meaningful example of engineering interest, consisting of a thick 2D EPDM cylinder is illustrated to validate the model proposed.  相似文献   

3.
By incorporating copper sulfate(CuSO_4)particles into acrylonitrile butadiene rubber(NBR)followed by heat pressing,a novel vulcanization method is developed in rubber through the formation of coordination crosslinking.This method totally differs from traditional covalent or non-covalent vulcanization approaches of rubber.No other vulcanizing agent or additional additive is involved in this process.By analyzing the results of DMA,XPS and FT-IR,it is found that the crosslinking of CuSO_4 particles filled NBR was induced by in situ coordination between nitrogen atoms of nitrile groups (-CN)and copper ions(Cu~(2 ))from CuSO_4.SEM and EDX results revealed the generation of a core(CuSO_4 solid particle)- shell(adherent NBR)structure,which leads to a result that the crosslinked rubber has excellent mechanical properties. Moreover,poly(vinyl chloride)(PVC)and liquid acrylonitrile-butadiene rubber(LNBR)were used as mobilizer to improve the coordination crosslinking of CuSO_4/NBR.The addition of PVC or LNBR could lead to higher crosslink density and better mechanical properties of coordination vulcanization.In addition,crystal water in CuSO_4 played a positive role to coordination crosslinking of rubber because it decreased the metal point of CuSO_4 and promoted the metal ionization.  相似文献   

4.
Two quaternary phosphonium salts (aromatic and aliphatic) have been used as intercalants for Na-montmorillonite and the effect of intercalant structure on clay morphology and natural rubber vulcanization kinetics was investigated. Due to its lower rigid structure the aliphatic salt was easier to intercalate into the clay galleries giving rise to a higher interlayer distance and facilitating the rubber intercalation obtaining an exfoliated structure in the nanocomposite. The vulcanization process was sensibly accelerated by this organoclay and a higher crosslinking degree was observed in the nanocomposite which gave rise to materials with improved processing and physical characteristics.  相似文献   

5.
In elastomer/organo clay nanocomposites, the morphological characteristics, and hence the mechanical properties, of the vulcanizates are strongly influenced by the organic modifier and the vulcanization process. When the elastomer itself undergoes strain‐induced crystallization, both the organic modifier and the dispersed filler particles could significantly influence the crystallization process. These phenomena are very common in case of natural rubber‐based vulcanizates. In this study, the similar effects have been demonstrated with carboxylated nitrile rubber (XNBR) and organically modified layered double hydroxide (O‐LDH)‐based nanocomposites. The effect of size of the organic modifier was obviously visible on the interlayer distance of O‐LDH and also on the morphological reorganization of the dispersed O‐LDH particles during vulcanization process. The strain‐induced crystallization of the XNBR was found to be strongly dependent on the morphological change that occurs during vulcanization process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

6.
Differential scanning calorimetry was used to follow the unaccelerated and accelerated sulfur vulcanization process in natural rubber and polybutadiene compounds. It was established that in both hard and soft rubber vulcanization, the heat of vulcanization (ΔHv) depends only on the sulfur concentration provided other ingredients (carbon black, zinc oxide, stearic acid) and the elastomer blend ratio remain constant. Organic accelerators alter the temperature dependence of the exotherm but have no effect on ΔHv over a considerable concentration range.The DSC exotherm was used to determine variations in sulfur/accelerator concentrations in production compounds. Analysis time is short—approx. 5 min—and a routine quality control method is suggested.  相似文献   

7.
The homolytic dissociation of the important vulcanization accelerator tetramethylthiuram disulfide (TMTD) has been studied by ab initio calculations according to the G3X(MP2) and G3X(MP2)-RAD theories. Homolytic cleavage of the SS bond requires a low enthalpy of 150.0 kJ mol-1, whereas 268.0 kJ mol-1 is needed for the dissociation of one of the C-S single bonds. To cleave one of the SS bonds of the corresponding trisulfide (TMTT) requires 191.1 kJ mol-1. Me2NCS2* is a particularly stable sulfur radical as reflected in the low S-H bond dissociation enthalpy of the corresponding acid Me2NC(=S)SH (301.7 kJ mol-1). Me2NCS2* (2B2) is a sigma radical characterized by the unpaired spin density shared equally between the two sulfur atoms and by a 4-center (NCS2) delocalized pi system. The ESR g-tensors of the radicals Me2NCSn* (n = 1-3) have been calculated. Both TMTD and the mentioned radicals form stable chelate complexes with a Li+ cation, which here serves as a model for the zinc ions used in accelerated rubber vulcanization. Although the binding energy of the complex [Li(TMTD)]+ is larger than that of the isomeric species [Li(S2CNMe2)2]+ (12), the dissociation enthalpy of TMTD as a ligand is smaller (125.5 kJ mol-1) than that of free TMTD. In other words, the homolytic dissociation of the SS bonds of TMTD is facilitated by the presence of Li+ ions. The sulfurization of TMTD in the presence of Li+ to give the paramagnetic complex [Li(S3CNMe2)2]+ is strongly exothermic. These results suggest that TMTD reacts with naked zinc ions as well as with the surface atoms of solid zinc oxide particles in an analogous manner producing highly reactive complexes, which probably initiate the crosslinking process during vulcanization reactions of natural or synthetic rubber accelerated by TMTD/ZnO.  相似文献   

8.
In this paper, the effects of drying and aging of natural rubber particles of Hevea brasiliensis are studied. The evolutions of the particle morphology and of the elemental distribution are investigated using electron-energy-loss spectroscopy imaging in a low-energy transmission electron microscope (ESI-TEM). It is found that when the sample is aged, calcium salt crystallites are formed around the particles. Fusion of these crystallites with time to form larger crystals shows evidence of ion mobility in the dry rubber matrix. Electron diffraction patterns and elemental mapping analysis indicate the crystals to be calcium sulfate. These crystallites are closely associated with membrane materials of the rubber particle and are surprisingly compatible with the hydrocarbon matrix of the rubber particle. It is proposed that polar sites on the membrane materials provide nucleation sites for the crystallization of calcium and sulfate ions from the latex serum.  相似文献   

9.
This paper presents the influence of graphene on the vulcanization kinetics of styrene butadiene rubber (SBR) with dicumyl peroxide. A curemeter and a differential scanning calorimeter were used to investigate the cure kinetics, from which the kinetic parameters and apparent activation energy were obtained. It turns out that with increasing graphene loading, the induction period of the vulcanization process of SBR is remarkably reduced at low graphene loading and then levels off; on the other hand, the optimum cure time shows a monotonous decrease. As a result, the vulcanization rate is suppressed at first and then accelerated, and the corresponding activation energy increases slightly at first and then decreases. Upon adding graphene, the crosslinking density of the nanocomposites increases, because graphene takes part in the vulcanization process.  相似文献   

10.
在丁腈橡胶中引入无机金属盐粒子,通过腈基与金属离子之间的固相配位反应来实现丁腈橡胶的配位硫化,创建了一个完全不同于传统硫磺硫化体系的新型非共价键配位交联的橡胶网络体系.同时制备了具有优异的力学性能的配位硫化橡胶材料,既可以作柔性的橡胶材料使用,也可以作为韧性、脆性的塑料材料使用.本文就影响配位交联反应的两个关键因素(金属盐粉末的粒径和丁腈橡胶的丙烯腈含量)进行了探讨,提出了提高配位硫化效率的办法(结晶水、增塑剂等).  相似文献   

11.
Rubber compounds based on styrene-butadiene rubber/ethylene propylene diene monomer blends of different compositions (60/40, 70/30, 80/20, 90/10, 100/0) reinforced with 1 wt%, 3 wt%, 5 wt% and 7 wt% organoclay (Cloisite 20A) were prepared on a two roll mill via a vulcanization process and characterized by several techniques. Results of X-ray diffraction showed expansion of the inter-gallery distance, and transmission electron microscopy (TEM) micrographs confirmed that the prepared nanocomposite samples have intercalated and partially exfoliated structures. Cure characteristics showed that, organoclay not only accelerates the vulcanization reaction, but also gives rise to a marked increase of the torque, indicating crosslink density of the prepared compounds increases at the presence of organoclay. Mechanical properties of samples received markedly increase by clay loading due to the good interaction established between nanoclay particles and polymer matrix as it was evidenced by SEM photomicrographs. At the same time, rheological properties showed that addition of nanoclay could improve storage modulus as well as complex viscosity of SBR/EPDM samples. The results of ozone test revealed that the ozone resistance of samples significantly increases as nanoclay or EPDM content increases.  相似文献   

12.
Blends of poly(vinylidene fluoride) (PVDF) and silicone rubber (SR) were prepared through dynamic vulcanization. The effects of SR content on crystallization behavior, rheology, dynamic mechanical properties and morphology of the blends were investigated. Morphology characterization shows that the crosslinked spherical SR particles with an average diameter of 2-4 μm form a “network” in the PVDF continuous phase. The dynamic mechanical properties indicate the interface adhesion between PVDF and rubber phase is improved by the dynamic vulcanization. The rheology study shows that with the increase of rubber content the blends pseudoplastic nature is retained, while the viscosity increases, and hence the processability is less good. The incorporation of SR phase promotes the nucleation process of PVDF, leading to increased polymer crystallization rate and crystallization temperature. However, a higher content of SR seems to show a negative effect on the crystallinity of the PVDF component.  相似文献   

13.
A combination of knowledge on curing process of rubber mixes with novel methods of chemical analysis, a new unconventional approach to analysis of rubber vulcanization is presented in this study. Six SBR samples containing various N-tert-butyl-2-benzothiazole sulfenamide (TBBS) accelerator: sulfur ratios (within) the range of conventional (CV) sulfur vulcanization system were studied using multi-capillary column ion mobility spectrometry (MCC-IMS) technique. For these analysis, calibration/dilution curves were established. Moreover, data from MCC-IMS were correlated with other parameters of the rubber vulcanizates – their crosslink density and structure as well as their tensile strength and modulus at elongation. For such comparison, one of the reaction products from thermal decomposition of TBBS, benzothiazole was selected. Furthermore, the concentration of benzothiazole released during the vulcanization process corresponded well with the crosslink density of the rubber vulcanizates studied. It was even possible to calculate the crosslink density from the concentration of benzothiazole determined by MCC-IMS, using Boltzmann fitting curve. The presented results could be an important contribution in understanding the mechanisms occurring during rubber vulcanization, demonstrating a new approach to testing and evaluation of the process.  相似文献   

14.
The salient features of nonelemental sulfur vulcanization by tetramethylthiuram disulfide (TMTD) and elemental sulfur vulcanization promoted by TMTD both in presence and absence of ZnO and stearic acid have been studied. In stock containing TMTD, a higher rate constant value for dicumyl peroxide (DCP) decomposition was observed. TMTD decreases the crosslinking density due to DCP depending on its concentration. An entirely radical mechanism has been advanced in the absence of ZnO. ZnO or ZnO–stearic acid seems to alter the entire course of reaction. The rate of crosslinking increases in the presence of ZnO or ZnO–stearic acid. Moreover, crosslinks are formed additively (further supported from the activation energy data), and mixed crosslink formation has been confirmed by the methyl iodide test of the vulcanizates. Stearic acid has no effect on crosslink formation. An ionic chain mechanism has been postulated in the presence of ZnO, as suggested by British authors.  相似文献   

15.
Polypropylene/ethylene-propylene-diene rubber (PP/EPDM) blends in situ compatibilized by magnesium dimethacrylate (MDMA) were fabricated via peroxide-induced dynamic vulcanization. Scanning electron microscope observation indicated that the size of cross-linked EPDM particles decreased with incorporation of MDMA. Polarizing Optical Microscope (POM) analysis suggested that the spherulite size of PP phase decreased sharply with incorporation of MDMA during dynamic vulcanization. The Pseudo-Avrami, Ozawa and Mo's models were applied to analyze the non-isothermal crystallization kinetics of the composites. The analyzed data indicated that the crosslinked EPDM particles and homopolymerized MDMA acted as heterogeneous nucleating agents, which enhanced the crystallizability and decreased the spherulite size of the PP phase. In addition, the non-isothermal crystallization activation energy (ΔE) was calculated through the Kissinger and Friedman methods, and the ΔE value was found increase with incorporation of MDMA.  相似文献   

16.
Rubber blends are widely used for combining the advantages of individual rubber component. However, to date, how to determine and distinguish the vulcanization kinetics for each single rubber phase in rubber blends during the co-vulcanization process are still a challenge. Herein, high resolution pyrolysis gas chromatography-mass spectrometry (PyGC-MS) was employed for the first time to investigate the vulcanization kinetics of natural rubber (NR) and styrene-butadiene rubber (SBR) in their blends filled with graphene. It is shown that the crosslinking rate of NR chains (kNR) was much lower than that of SBR chains (kSBR) in the unfilled blends and blends with untreated graphene. Interestingly, the gap between kSBR and kNR was narrowed effectively in the blends with vulcanization accelerator grafted graphene, showing a better co-vulcanization of NR and SBR. In addition, the vulcanization accelerator grafted graphene was uniformly dispersed in rubber matrix and endowed rubber blends with higher mechanical strength and thermal conductivity did the untreated graphene.  相似文献   

17.
采用了熔融插层和两种硫化体系硫磺 促进剂和过氧化物体系制备了三元乙丙橡胶 蒙脱土纳米复合材料 ,并将这两种体系形成的纳米复合材料进行了形态、力学性能和光学性能的比较 ,同时采用Flory Rehner方程对它们的硫化行为进行了评价 .X射线衍射 (XRD)、透射电镜 (TEM)、力学性能和光学性能的测试结果表明 ,由硫磺硫化体系制备的纳米复合材料为不透明和剥离型 .其原有的d0 0 1 衍射峰消失 ,有序层被剥离成 10 0~ 2 0 0nm的片层均匀分散在EPDM基体中 ,其力学性能有了极大的提高 ;而过氧化物体系制备的纳米复合材料为半透明和插层型 .对两种体系的硫化行为的评价结果表明 ,随着有机蒙脱土加入量的增加 ,硫磺 促进剂硫化体系的t90 延长 ,交联密度减小 ,最大 最小转矩也变小 ;而过氧化物硫化体系的相应值却变化不大  相似文献   

18.
The preparation and characterization of polymer blends with structured natural rubber (NR)-based latex particles are presented. By a semicontinuous emulsion polymerization process, a natural rubber latex (prevulcanized or not) was coated with a shell of crosslinked polymethylmethacrylate (PMMA) or polystyrene (PS). Furthermore, core–shell latexes based on a natural rubber/crosslinked PS latex semi-interpenetrating network were synthesized in a batch process. These structured particles were incorporated as impact modifiers into a brittle polymer matrix using a Werner & Pfleiderer twin screw extruder. The mechanical properties of PS and PMMA blends with a series of the prepared latexes were investigated. In the case of PMMA blends, relatively simple core (NR)–shell (crosslinked PMMA) particles improved the mechanical properties of PMMA most effectively. An intermediate PS layer between the core and the shell or a natural rubber core with PS subinclusions allowed the E-modulus to be adjusted. The situation was different with the PS blends. Only core–shell particles based on NR-crosslinked PS latex semi-interpenetrating networks could effectively toughen PS. It appears that microdomains in the rubber phase allowed a modification of the crazing behavior. These inclusions were observed inside the NR particles by transmission electron microscopy. Transmission electron photomicrographs of PS and PMMA blends also revealed intact and well-dispersed particles. Scanning electron microscopy of fracture surfaces allowed us to distinguish PS blends reinforced with latex semi-interpenetrating network-based particles from blends with all other types of particles.  相似文献   

19.
The use of binary accelerators has gained tremendous importance since it increases the production rate of the article made of that elastomer. The authors have analyzed the performance of a novel binary accelerator system in the sulphur vulcanization of natural rubber (NR). The vulcanizates resulting from the binary accelerated process obtained good mechanical properties, ageing and swelling resistance. Network characterization of the mixes was done using swelling measurements, stress-strain analysis etc. The chain entanglement density was measured using dynamic mechanical analysis. However the performance is found to be dependent on the relative proportion of mono, di and polysulphidic linkages in the material. The result of the study points out that the proposed system can be active in NR regardless of the vulcanization recipe and temperature. The performance of the new binary system in filled vulcanizates is also studied. Based on the processing, mechanical and chemical characterization an optimum concentration is suggested for the new system.  相似文献   

20.
The nanoscaled crack initiation and evolution of natural rubber under high temperature (85 °C) and small strain amplitude (strain maximum α = 1) fatigue condition were investigated. It was shown by scanning electron microscopy (SEM) images that cracks and cavities with dimensions in nanoscale in the NR matrix appear during the high temperature fatigue. FTIR study indicated that thermal oxidation effect leads to the crosslinking structure destruction. According to the combined analysis of SEM, energy-dispersive X-ray (EDX) spectrometer and small angle X-ray scattering investigations, it was deduced that the destruction of crosslinking structure mainly locates in the vicinity of the ZnS particles with a diameter of 20.2 nm. The ZnS particles are generated as a byproduct in the vulcanization process. Further, the real-time SAXS analysis revealed that the cracks are primarily initiated at relative higher strains (0.7<α < 1) in the region of ZnS aggregations and larger cavities are derived from the enlargement of the cracks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号