首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Summary Proper retention of polymers in high performance liquid chromatography often requires injection into a starting eluent which is not a solvent for the sample under investigation. In this case, the polymer is precipitated at the top of the column. Subsequent gradient elution has to be performed by addition of an eluent with sufficient chromatographic strength and solvent power. In normal phase chromatography, it must be a solvent of high polarity. With the gradient elutions reported so far, polarity and dissolution power were simultaneously increased.The present paper reports the separate control of solvent strength and chromatographic power by applying gradient programs which include sudden addition of a moderately polar solvent. The amount of the latter does not suffice for elution, which is performed by subsequent, controlled addition of a highly polar nonsolvent. Sudden transition gradients of this kind work with, e.g.,iso-octane as a nonpolar starting eluent, tetrahydrofuran as a solvent of intermediate polarity, and methanol as a strongly polar nonsolvent. They have been applied to copolymers from styrene and ethyl methacrylate, methyl methacrylate, or methoxyethyl methacrylate.  相似文献   

2.
Summary Copoly(styrene/acrylonitrile) samples (S/AN) have been repeatedly separated according to composition by gradient HPLC with alkane hydrocarbons as a starting eluent A and dichloromethane (DCM) or tetrahydrofuran (THF) as a solvent B. In these systems, retention increased with AN content of the copolymers. The chemical nature of the column packings used had almost no influence on the retention of S/AN samples. The present paper shows thatn-pentane andn-heptane, when used in a given volumetric gradient with DCM+20% methanol as a solvent B, lead to identical solution characteristics of S/AN on silica columns. A similar result was obtained on C18 columns withn-heptane or cyclohexane, whereas gradient elution with toluene as a starting eluent caused insufficient resolution. Reversed phase separation of S/AN copolymers could be achieved on polystyrene gel columns through gradients with methanol as a starting eluent and DCM or THF as a solvent B. In both systems, retention decreased with increasing AN content of the copolymers. The elution characteristics were almost linear in the range 0–20 wt% AN. This behaviour can be understood in the context of polymer solubility: in both systems, the solubility borderline of S/AN has a distinct maximum at about 25 wt% AN. Reversed phase separation was achieved at the lefthand slope of these curves where the dissolution of a sample with a higher AN content requires less DCM or THF solvent than the dissolution of copolymers which are poorer in AN. This idea predicts that samples with more than 25 wt% AN should elute later than S/AN whose composition is near to the solubility maximum. This indeed was found with a copolymer containing 36.2 wt% AN.  相似文献   

3.
Microemulsion electrokinetic capillary chromatography (MEEKC) in a suppressed electroosmotic flow (EOF) strategy was investigated for analysing a group of nonsteroidal anti-inflammatory drugs (NSAIDs) in water samples. The EOF was effectively suppressed with an acidic buffer as the aqueous phase. Four water immiscible solvents, oils (n-heptane, n-octane, ethyl acetate and di-n-butyl tartrate) and three organic solvents (methanol, 2-propanol and acetonitrile) were tested to optimise the pseudostationary phase and to obtain efficient separations. The optimum microemulsion background electrolyte (BGE) solution consisted of 0.8% (w/w) n-heptane, 6.6 (w/w) butan-1-ol, 15.0% (w/w) acetonitrile, 3.3% (w/w) sodium dodecyl sulfate (SDS), and 74.3% (w/w) of 25 mM sodium phosphate at pH 2.5. Stacking with reverse migrating pseudostationary phase (SRMP) was applied to enhance the concentration sensitivity of the NSAIDs. When this preconcentration technique was used, the sample stacking and the separation processes took place successively with the same voltage without an intermediate polarity switching step. Detection limits (LODs) in the order of 5–15 μg L−1 for the NSAIDs were obtained using SRMP for standard solutions. The developed method was validated for the analysis of NSAIDs in tap water samples by combining an off-line solid-phase extraction (SPE) step and the on-column preconcentration technique SRMP. The LODs were in the 100–230 ng L−1 range.  相似文献   

4.
The Kirkwood–Buff integrals and the volume-corrected preferential solvation parameters for the first solvation shell of binary mixtures of tetrahydrofuran with many organic solvents, calculated from reported thermodynamic data at the temperatures for which these data were available, are reported. The co-solvents include c-hexane, methyl-c-hexane, n-heptane, i-octane, benzene, toluene, ethylbenzene, 1-chlorobutane, dichloromethane, 1,2-dichloroethane, chloroform, 1,1,1-trichloroethane, tetrachlorom-ethane, tetrachloroethene, hexafluoro benzene, ethanol, 1-propanol, 2-propanol, dibutyl ether, acetic acid, acetone, dimethyl sulfoxide, tetramethylene sulfone (sulfolane), acetonitrile, pyrrolidine, and triethylamine. The preferential solvation parameters of these mixtures are discussed in terms of the interactions that occur.  相似文献   

5.
Summary Copolymers of styrene and ethyl methacrylate (SEMA) have been separated according to composition by reversed-phase chromatography on C18 columns. The starting eluent was methanol, in which the copolymers are insoluble, and an elution gradient was formed by the addition of tetrahydrofuran, which is less polar than methanol yet a good solvent for SEMA copolymers. The method was applied to fractions obtained by size exclusion chromatography of model mixtures, and yielded a separation superior to that obtained in normal-phase mode on polar columns using gradients of increasing polarity.
Untersuchung von Copolymeren von Styrol und Ethylmethacrylat durch Größenausschluß-Chromatographie und Gradient-HPLCII. Gradient-HPLC unter Umkehrphasen-Bedingungen

Part I: see [1]  相似文献   

6.
Summary Statistical copolymers of styrene and acrylonitrile have been separated by high performance precipitation chromatography according to the increase in acrylonitrile content. The separation mechanism was strongly depending on the combination of stationary phase and eluent composition. By applying a typical normal phase gradient from n-heptane (precipitation) to dichloromethane the polymers were adsorbed, after dissolution of the polar groups of the stationary phases. The elution curves became broader with increasing acrylonitrile content of the polymer. By the addition of 20% methanol to the dichloromethane the adsorption could be minimized and copolymer elution was dependent solely on solubility and independent of stationary phase polarity. Separation according to chemical composition was also possible without precipitation with a large pore silica and a normal phase gradient from dichloromethane to the same eluent containing 2.75% methanol.Part I see reference 19  相似文献   

7.
Photochemical reactions of N-vinylcarbazole (VCZ), studied in various solvents, were profoundly influenced by the atmosphere. In the deaerated system radical polymerization of VCZ occurred in various solvents, e.g., tetrahydrofuran, acetone, ethyl methyl ketone, acetonitrile, methanol, sulfolane, N,N-dimethylformamide (DMF), or dimethyl sulfoxide (DMSO). By contrast, when dissolved oxygen was present, cyclodimerization of VCZ occurred exclusively to give trans-1,2-dicarbazole-9-yl-cyclobutane in such polar, basic solvents as acetone, ethyl methyl ketone, acetonitrile or methanol. In stronger basic solvents, i.e., sulfolane, DMF, or DMSO, simultaneous radical polymerization and cyclodimerization of VCZ proceeded, the ratio of the cyclodimerization to the radical polymerization decreasing in the order, sulfolane > DMF > DMSO. In dichloromethane, on the other hand, cationic polymerization of VCZ occurred irrespective of the atmosphere. It is suggested that oxygen acts as an electron acceptor to the excited VCZ, electron transfer occurring in polar solvents from the excited VCZ to oxygen to give transient VCZ cation radical. The effect of solvent basicity on the photocyclodimerization of VCZ is discussed.  相似文献   

8.
G. Glöckner  D. Wolf 《Chromatographia》1992,34(5-8):363-368
Summary Block copolymers of styrene andt-butyl methacrylate can be analysed by methanol/tetrahydrofuran gradients on C18 or phenyl bonded phase columns. On both of these columns, retention increases with styrene content of the samples. At 50°C, the retention of PS or a block copolymer containing 45% styrene was longer on the phenyl than the C18 columns. This indicates the contribution of adsorption to retention on phenyl bonded phase columns. Lowering the temperature from 50 to 30°C caused earlier elution of part of the sample from the phenyl phase. On a C18 phase the same drop in temperature improved the shape of the peak, which also started later than at 50°C. This effect of temperature is generally observed in polymer retention due to an adsorption mechanism, whereas increasing retention with decrease in temperature is characteristic of a precipitation mechanism.The block copolymer investigated contained 15% free polystyrene precursor which could not be separated from the block copolymer under the conditions employed. The addition of 20% PS homopolymer with a molecular weight similar to that of the styrene block in the copolymer showed that the polystyrene eluted together with the block copolymer, whereas the addition of PS homopolymer with a much higher molecular weight caused an extra peak at the expected elution time.Part I see Ref. [1].Dedicated to Professor Leslie S. Ettre on the occasion of his 70th birthday.  相似文献   

9.
New amphiphilic networks have been synthesized by free-radical co-polymerization of hydrophobic methacryloyl-capped polyisobutylenes (MA-PIB-MA) with hydrophilic 2-(dimethylamino)ethyl methacrylate. Two MA-PIB-MAs have been prepared with Mn = 4920 and 10 200, and two series of networks were prepared with MA-PIB-MA contents between 48 and 71.5%. Variation of the molecular weight of MA-PIB-MA and its concentration in the network allows for a wide range of mechanical properties and swellability in hydrophilic and hydrophobic solvents. Differential scanning calorimetry shows the existence of two glass transitions in these networks and thus indicates a phase-separated domain structure. Tensile strengths and elongations were dependent on MA-PIB-MA contents varying from 57.7 to 39.8 kg/cm2 and from 168 to 200%, respectively, with increasing MA-PIB-MA content. Solvent swelling of the networks ranged from 170 to 20% in water and from 40 to 170% in n-heptane with increasing MA-PIB-MA contents.  相似文献   

10.
The retention behavior and mechanism of methyl, ethyl, propyl, isopropyl, buthyl and isobuthyl benzoates have been studied at different eluent compositions of aqueous mixtures with water-soluble organic solvents (methanol, ethanol, 1-propanol, 2-propanol, acetonitrile (AN), 1,4-dioxane and tetrahydrofuran (THF)) in RPLC. The retention of the solutes is discussed based on the solvent composition, solvent polarity (ETN value), preferential solvation, hydrogen bonding and solvent clusters of the eluents. The smaller ETN values and the larger preferential solvation of the mixed solvent eluted the solutes faster. The IR spectra of HDO suggested that the solvents, except for methanol and ethanol, break the hydrogen bonding between water molecules, resulting in fast elution of the solutes. Based upon the results, we chose an optimum solvent composition for the separation of benzoates and applied it to the determination of the benzoates in clove.  相似文献   

11.
Polymerization of isoprene with Lewis acids in n-heptane is a process leading to a quasiequilibrium which is characterized by very low conversions. Polymerization rates in aromatic solvents are much higher due to extensive chain transfer with solvent with regeneration of the original active centers. The rate of monomer disappearance in benzene or toluene when aluminum bromide is the catalyst is second order with respect to monomer concentration. The reaction order with respect to the catalyst depends on the reaction conditions; at constant monomer concentration it is approximately one. Polymerization rates in halogenated solvents with the use of syringe techniques are much higher than those in aromatic solvents. Polymers obtained with various cationic catalysts ranged from oils to white powders having molecular weights up to more than 100,000 depending on reaction conditions. All polymers exhibited infrared spectra characteristic of cyclopolydienes, and the content of linear structures usually did not exceed 20%, irrespective of the nature of the catalyst or solvent. In solvents of higher polarity, such as o-dichlorobenzene, more linear structures were detected. Among residual linear forms the trans-1,4 addition was found to prevail. Residual unsaturation in polymers did not exceed 30%.  相似文献   

12.
The experimental technique of mass spectrometric tracer pulse chromatography was used to study the effect of the sorption of eluent components by a C18-bonded silica RPLC packing on the retention of a series of test analytes during isocratic and gradient elution experiments. The analytes of interest were a substituted phenol, a substituted nitroaniline, an anti-malaria drug, tetrahydrofuran, and methanol. The eluent used was a mixture of acetonitrile and water. The solutes and isotopically labeled eluent components were injected at fixed time intervals during each gradient run. The mass specific detector allowed the assignment of individual analyte peaks even when there was overlap in the chromatograms from successive injections. Thus, the retention time of each analyte could be determined as a function of gradient slope and initial eluent composition at the time of each injection. Experimental gradient retention time data were then compared with the calculated results from two theoretical models. The first model assumed the velocity of the mobile phase and eluent were equal. The second and most realistic model assumed the velocity of the eluent was less than the velocity of the mobile phase due to the uptake of eluent by the stationary phase. Gradient retention times predicted by the two models were reasonably accurate with the sorption model giving slightly more accurate values. Inverse calculations, i.e., calculation of isocratic retention factors from gradient elution data were also carried out with very similar results. That is, the model allowing for the uptake of eluent was slightly more accurate than the model assuming no eluent-stationary phase interaction.  相似文献   

13.
Corradini  D.  Grego  S.  Liburdi  K.  Marinari  S.  Tonci  M. 《Chromatographia》2006,63(13):S11-S16

This paper reports the results of a study carried out to evaluate the potentiality of combining selective solvent extraction and linear gradient elution reversed-phase high performance liquid chromatography (RP-HPLC) for characterizing soil organic matter on the basis of polarity of its constituting organic compounds. Such approach comprises the sequential extraction of soil organic matter with organic solvents of increasing polarity in a Soxhlet extractor and the subsequent separation of each extract by RP-HPLC. Accordingly, each soil sample has been subjected to cycles of sequential extraction with n-hexane, dichloromethane, ethyl acetate, and methanol. Each sample extracted by one of the four solvents have been dried in a rotary evaporator device at 40°C and then dissolved again in the proper volume of extraction solvent to obtaining sample solutions of concentration ranging from 5.0 to 15 mg ml−1. These sample solutions have been subjected to RP-HPLC separation using a Supelcosil LC-ABZ column that has been eluted by a linear acetonitrile gradient in water, having the same profile for all samples. The study has evidenced the possibility of producing highly repeatable chromatographic profiles, which are correlated to the polarity of organic solvents employed for extracting the organic matter in the Soxhlet extractor.

  相似文献   

14.
Counter‐current chromatography is a chromatographic technique with a support‐free liquid stationary phase. In the present study, a successful application of linear gradient counter‐current chromatographic method for preparative isolation of bioactive components from the crude ethanol extract of Zanthoxylum planispinum was presented. The application of n‐hexane/ethyl acetate/methanol/water quaternary solvents, in terms of “HEMWat” or “Arizona” solvent families, in gradient elution mode was evaluated. Results indicated that slightly proportional changes of biphasic liquid systems provided the possibility of gradient elution in counter‐current chromatography, maintaining stationary phase retention in the column. With the selected quaternary solvent systems composed of n‐hexane/ethyl acetate/methanol/water (2:1:2:1 and 3:2:3:2, v/v), and optimized gradient programs, in total seven fractions were separated in 4.5 h. Most of the purified compounds could be obtained at the milligram level with over 80% purity. The present study indicated that the linear gradient counter‐current chromatographic approach possessed unique advantages in terms of separation efficiency, exhibiting great potential for the comprehensive separation of complex natural extracts.  相似文献   

15.
Application of polymeric probes was proposed for evaluation of partition properties of the high performance liquid chromatographic stationary phases. The approach was tested with selected silica gel C-18 column packings. Polystyrene (PS) and poly(n-butyl methacrylate) (PnBMA) narrow molar mass standards of low polarity were applied to avoid adsorption of macromolecules on silanols and other polar groups present within column packings. Polar eluent components further reduced contingency of silanophilic interactions. The major eluent component was dimethylformamide (DMF), a thermodynamically poor solvent for polymer probes, which strongly promoted enthalpic partition of macromolecules in favor of the C18 bonded phase. Methyl ethyl ketone (MEK) and diethyl malonate (DEM) were also tested as the partition promoting eluent components. With polystyrenes, MEK was rather inefficient as a partition promoter while DEM was similarly active as DMF. A thermodynamically good solvent for polymer probes, viz. tetrahydrofuran (THF) was added to eluent to reduce and control the extent of partition. The differences in elution behavior of column tested indicate their unlike partition properties.  相似文献   

16.
The separation of six-component blends of chemically similar homopolymers utilising the full adsorption-desorption (FAD) process is presented. The main advantage of the FAD approach over other methods represents the successive and independent size- exclusion chromatography (SEC) characterisation of all blend components. The method is based on the full adsorption and retention of all n or n−1 components of the polymer blend from an adsorption promoting liquid (ADSORLI) in a small FAD column. Nonadsorbed macromolecules are forwarded directly into SEC for molecular characterisation. Next, appropriate displacers are successively applied to the FAD column to selectively release preadsorbed blend constituents into the on-line SEC column. Dynamic integral desorption isotherms for single constituents, as well as for polymer blends to be analysed, allow identification of optimal displacer compositions to release just one kind of macromolecule. Model polymer blends containing polystyrene (PS), poly(lauryl methacrylate), poly(butyl methacrylate), poly(ethyl methacrylate), poly(methyl methacrylate) and poly(ethylene oxide) (PEO) or, alternatively, PS, poly(2-ethylhexyl acrylate), poly(butyl acrylate), poly(ethyl acrylate), poly(methyl acrylate) and PEO of similar molar masses can be separated and characterised in one multistep run using nonporous silica FAD packing, toluene as an ADSORLI and its mixtures with a desorption promoting liquid such as ethyl acetate, tetrahydrofuran or dimetylformamide to form displacers with appropriate desorption strength. Received: 9 September 1998 Accepted in revised form: 16 November 1998  相似文献   

17.
The binary interaction energies between styrene and various methacrylates were determined from newly examined phase boundaries with lattice–fluid theory. Because the blends of polystyrene (PS) and poly(cyclohexylmethacrylate) (PCHMA) were only miscible at high molecular weights when the blends were prepared by solution casting from tetrahydrofuran, we examined the miscibility of other blends by changing the molecular weights of PS or methacrylate polymers. On the basis of the phase‐separation temperature caused by the lower critical solution temperature, the miscibility of PS with the various methacrylates appeared to be in the order PCHMA > poly(n‐propyl‐methacrylate) (PnPMA) > poly(ethyl methacrylate) (PEMA) > poly(n‐butyl‐methacrylate) (PnBMA) > poly(iso‐butyl‐methacrylate) > poly(methyl methacrylate) (PMMA) > poly(tert‐butyl methacrylate), and the branching of butylmethacrylate appeared to decrease the miscibility with PS. The interaction energies between PS with various methacrylates obtained from phase boundaries with lattice–fluid theory reached minimum value corresponding to the styrene/n‐propylmethacrylate interaction. They were in the order PnPMA < PEMA < PCHMA < PnBMA < PMMA. The difference in the order of miscibility and interaction energies might be attributed to the terms related to the compressibility. The phase‐separation temperatures calculated with the interaction energies obtained here indicated that the PS/PEMA and PS/PnPMA blends at high molecular weights were miscible, whereas the PS/PnBMA blends were immiscible at high molecular weights. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2666–2677, 2000  相似文献   

18.
Vitamin A isomers are usually separated and analysed by high performance liquid chromatography (HPLC) using an eluent mixture which contains organic solvents such as n-hexane or 1,4-dioxane. However, both are toxic, n-hexane causes a degenerating nerve disease, whereas 1,4-dioxane is supposed to be carcinogenic. In order to avoid preventive handling and potential hazards to health these solvents have been replaced by various mobile phases of n-heptane/tert-butylmethylether. The advantages are better baseline separation of the main retinol isomers and discrimination of even several di- and tri-cis-retinol isomers, low solvent consumption and no known risk so far to health.  相似文献   

19.
Fluorine-19 and sodium-23 NMR measurements were carried out on sodium hexafluorophosphate solutions in a number of solvents. In solvents of medium polarity and donicity (e.g., propylene carbonate, acetone, acetonitrile) the 19 F chemical shift moved upfield with increasing concentration of the salt. This behavior is indicative of anion-cation interactions which may be of long-range type, i.e., formation of solvent-separated ion pairs; the possibility of contact ion pair formation, however, cannot be excluded. In solvents of low polarity and donicity (acetic acid, tetrahydrofuran), the salt is essentially completely associated in the 0.1–1.0M concentration range. On the other hand, in solvating solvents with high dielectric constants, such as dimethyl-formamide, dimethylsulfoxide, and formamide, there is very little ionic association in the same concentration range. The above conclusions are supported by 23 Na chemical shift measurements. Potassium hexafluorophosphate solutions do not show any concentration dependence of the 19 F chemical shifts, while for tetra-n-butylammonium solutions the 19 F resonance moves downfield with increasing concentration of the salt.To whom correspondence should be addressed.  相似文献   

20.
The efficient enantioseparation of 26 racemates has been achieved with the perphenylcarbamoylated cyclodextrin clicked chiral stationary phase by screening the optimum composition of mobile phase in high‐performance liquid chromatography. The chromatographic results indicate that both the retention and chiral resolution of racemates are closely related to the polarity of the mobile phases and the structures of analytes. The addition of alcohols can significantly tune the enantioseparation in normal‐phase high‐performance liquid chromatography. The addition of methanol and the ratio of ethanol/methanol or isopropanol/methanol played a key role on the resolution of flavonoids in ternary eluent systems. The chiral separation of flavonoids with pure organic solvent as mobile phase indicates the preferential order for chiral resolution is methanol>ethanol>isopropanol>n‐propanol>acetonitrile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号