首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary 1,3-Cyclohexanedione was alkylated with branched allyl bromides. The resulting 2-alkyl derivatives and their enol acetates possess antihelminthic activity. The enol acetate of 2-(3,7,11-trimethyl-2-dodecenyl)-1,3-cyclohexanedione was found to be the most active.  相似文献   

2.
Laser flash photolysis of 1-bromo-1-(4-methoxyphenyl)acetone in acetonitrile leads to the formation of the alpha-acyl 4-methoxybenzyl radical that under acidic conditions rapidly protonates to give detectable amounts of the radical cation of the enol of 4-methoxyphenylacetone. This enol radical cation is relatively long-lived in acidic acetonitrile (tau approximately equal to 200 micros), which is on the same order of magnitude as the radical cations of other 4-methoxystyrene derivatives. Rate constants for deprotonation of the radical cation and the acid dissociation constant for the enol radical cation were also determined using time-resolved absorption spectroscopy. Deprotonation is rapid, taking place with a rate constant of 3.9 x 10(6) s(-1), but the enol radical cation is found to be only moderately acidic in acetonitrile having a pK(a) = 3.2. The lifetime of the enol radical cation was also found to be sensitive to the presence of oxygen and chloride. The sensitivity toward oxygen is explained by oxygen trapping the vinyloxy radical component of the enol radical cation/vinyloxy equilibrium, while chloride acts as a nucleophile to trap the enol radical cation.  相似文献   

3.
The temperature-dependent formation of a remarkably stable enol from the reaction of EtMgBr with a 1,2-diester was accidentally discovered. This compound was spectroscopically characterized (1H and 13C NMR, IR), and both methyl carbonate and trimethylsilyl ether derivatives were prepared. A mechanism for the selective formation of the stable enol ester and its corresponding keto form was suggested, and the kinetic stability of the enol was also documented. The generality of the observation of such a stable enol ester was demonstrated with the use of other Grignard reagents, and also other 1,2-diesters. The reaction of EtMgBr with a series of 1,2-amide esters also produced stable enol amides. The remarkable stability of the enol esters was attributed to the steric hindrance present in the aryl ester moiety of these compounds, and further studies will address the origin of this effect.  相似文献   

4.
This work aims at better understanding the complex effects of co-crystallization on a single salicylideneaniline molecular switch, (E)-2-methoxy-6-(pyridine-3-yliminomethyl)phenol (PYV3), which can tautomerize between an enol and a keto form. A combination of periodic boundary conditions DFT and molecular wavefunction calculations has been adopted for examining a selection of PYV3 co-crystals, presenting hydrogen bonds (H-bonds) or halogen bonds (X-bonds), for which X-ray diffraction data are available. Three aspects are targeted: i) the energy (H-bond strength, enol to keto relative energy, and geometry relaxation energies), ii) the geometrical structure (PYV3 to co-crystal and enol to keto geometrical variations), and iii) the electron distribution (PYV3 to co-crystal and enol to keto Mulliken charge variations). These allow i) explaining the preference for forming H-bonds with the nitrogen of the pyridine of PYV3 with respect to the oxygens and the importance of the crystal field, ii) distinguishing the peculiar behavior of the SulfonylDiPhenol (SDP) coformer, which stabilizes the keto form of PYV3, iii) describing the relative stabilization of the enol form upon co-crystallization (with the exception of SDP) and therefore iv) substantiating the co-crystallization-induced reduction of thermochromism observed for several PYV3 co-crystals.  相似文献   

5.
From quantum mechanics calculations we confirm that the naturally occurring enol lancifodilactone G is stable over the keto form (by 2.6 kcal/mol in water), the only known stable aliphatic enol (devoid of conjugated or bulky aromatics and lacking a 1,3-diketone structural motif known to stabilize enols). We determine architectural elements responsible for the enol stabilization and find a mechanism for keto-enol conversion in solution. In addition, we correct previously reported computational results that were performed on the misinterpreted structure demonstrating that the enol form of this natural product is more stable than previously thought.  相似文献   

6.
Reaction of isocyanates XNCO (X = Ar, i-Pr, t-Bu) with CH(2)(Y)CO(2)CH(2)CCl(3) (Y = CO(2)Me, CO(2)CH(2)CCl(3), CN) gave 15 amides XNHCOCH(Y)CO(2)CH(2)CCl(3) (6) or enols of amides XNHC(OH)=C(Y)CO(2)CH(2)CCl(3) (5) systems. The amide/enol ratios in solution depend strongly on the substituent Y and the solvent and mildly on the substituent X. The percentage of enol for group Y increases according to Y = CN > CO(2)CH(2)CCl(3) > CO(2)Me and decreases with the solvent according to CCl(4) > C(6)D(6) > CDCl(3) > THF-d(8) > CD(3)CN > DMSO-d(6). With the most acidic systems (Y = CN) amide/enol exchange is observed in moderately polar solvents and ionization to the conjugate base is observed in DMSO-d(6). The solid-state structure of the compound with Y = CN, X = i-Pr was found to be that of the enol. The reasons for the stability of the enols were discussed in terms of polar and resonance effects. Intramolecular hydrogen bonds result in a very low delta(OH) and contribute to the stability of the enols and are responsible for the higher percentage of the E-isomers when Y = CO(2)Me and the Z-isomers when Y = CN. The differences in delta(OH), delta(NH), K(enol), and E/Z enol ratios from the analogues with CF(3) instead of CCl(3) are discussed.  相似文献   

7.
[reaction: see text] A [5 + 2] cycloaddition reaction of a new five-carbon unit was developed on the basis of a dicobalt hexacarbonyl propargyl cation species. Under the influence of EtAlCl(2), [5-benzoyloxy-2-(triisopropylsiloxy)-1-penten-3-yne)]dicobalt hexacarbonyl reacted with enol triisopropylsilyl ethers to yield seven-membered dicobalt acetylene complexes in good yield. The reactions with cyclic enol silyl ethers as well as acyclic enol silyl ethers exhibited remarkably high diastereoselectivity. The cycloadducts can be easily converted into various kinds of cycloheptanone derivatives.  相似文献   

8.
The relative stabilities of guanine–cytosine (G–C) DNA base pairs are theoretically investigated with a focus on the keto–enol tautomerism as well as on the cis–trans enol isomerism by using both ab initio method and the density functional theory. The G–C pairs of the keto tautomers turn out to be in general more stable than those of the enol tautomers, 9H-guanine pair, 9KK (see the notation below), being the most stable one. The stability of the G–C pairs appears to be affected by various factors including the keto–enol tautomerization, cis–trans enol isomerization, and the steric hindrance between two tautomeric pairs. Although the B3LYP calculations tend to underestimate the binding energies, in addition, it is shown that the binding energy of G–C pairs interacting through hydrogen bonds can be reasonably calculated with the DFT method, contrary to the base pairs with stacked configurations.  相似文献   

9.
The palladium‐catalyzed reaction of acid anhydrides with silacyclobutane gives a mixture of cyclic silyl enol ether, carboxy(propyl)silane, and 3‐(carboxysilyl)ketone. In the presence of N,N‐dicyclohexylcarbodiimido (DCC), the reaction preferentially provides a cyclic silyl enol ether in a good yield. In addition, the palladium‐catalyzed reaction of benzoic acid with silacyclobutane in the presence of two equivalents of DCC also affords a cyclic silyl enol ether in a moderate yield. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
In this work, we devote to explore excited‐state intramolecular proton transfer (ESIPT) behavior for a novel fluorescent molecule naphthalimide‐based 2‐(2‐hydroxyphenyl)‐benzothiazole (HNIBT) [New J. Chem. 2019, 43, 9152.] in toluene and methanol (MeOH) solvents. Exploring weak interactions, stable HNIBT‐enol, and HNIBT‐MeOH‐enol complex can be found in S0 state via TDDFT/B3LYP/6‐311+G(d,p) level. Given photoexcitation, intramolecular hydrogen bond O1? H2···N3 of HNIBT‐enol and HNIBT‐MeOH‐enol is dramatically enhanced, which offers impetus for facilitates ESIPT reaction. After repeated comparisons, we verify the unavailability of intermolecular hydrogen bonding effects between HNIBT‐enol and MeOH molecules. In view of excitation, HOMO (π) → LUMO (π*) transition and the changes of electronical densities indeed impulse ESIPT tendency. Via constructing potential energy curves (PECs), for both HNIBT‐enol and HNIBT‐MeOH‐enol complex, the ESIPT could only occur along with intramolecular hydrogen bond O1? H2···N3. Through comparison, the potential barrier falls from 4.124 kcal/mol (HNIBT‐enol) to 2.132 kcal/mol (HNIBT‐MeOH‐enol). Therefore, we confirm that the ESIPT of the HNIBT system happens more easily in the MeOH solvent compared with the toluene solvent.  相似文献   

11.
Reactions of 5-chloro-N-(2-chloro-4-nitrophenyl)-2-hydroxybenzamide, the active substance of the drug Niclosamide (Phenasal), with higher amines (dodecan-1-amine, hexadecan-1-amine) and 1-(2-aminoethyl)-piperazine lead to the formation of the corresponding water-soluble ammonium salts with retention of pharmacophoric groups responsible for the antihelminthic effect, whereas no nucleophilic aromatic substitution of chlorine is observed. The product structure was determined by X-ray analysis.  相似文献   

12.
王先飞  钱刚 《分子催化》2024,38(3):234-244
采用密度泛函理论(DFT)计算,研究了由1,4-环己二酮-2,5-二甲酸二甲酯(DMSS)制备2,5-二羟基对苯二甲酸(DHTA)的反应机理。其中,采用IEFPCM溶剂模型着重计算了DMSS由酮式互变异构为烯醇式的溶剂效应,并探究了碘在催化DMSS烯醇式氧化芳构化过程中的作用机制。计算结果表明,在溶剂分子的辅助下,DMSS酮-烯醇式互变异构反应的能垒显著降低;芳构化过程中,碘首先与过氧化氢反应生成活性物质次碘酸,其催化DMSS烯醇式发生碘代反应,并经过后续的消去和互变异构生成2,5-二羟基对苯二甲酸二甲酯(DMDHT),DMDHT进一步水解生成DHTA。同时,通过核磁共振氢谱测试验证了DMSS酮-烯醇式互变异构的溶剂效应;反应性能考评实验结果表明,相较于无催化剂,在碘的催化作用下,DMDHT产品的纯度和收率更高。  相似文献   

13.
Tautomeric and structural properties of benzoylacetone, CH(3)-C(O)-CH(2)-C(O)-C(6)H(5), have been studied by gas-phase electron diffraction (GED) and quantum chemical calculations (B3LYP and MP2 approximation with different basis sets up to aug-cc-pVTZ). Analysis of GED intensities resulted in the presence of 100% enol tautomer at 331(5) K. The existence of two possible enol conformers in about equal amounts is confirmed by both GED and quantum chemical results. In both conformers the enol ring possesses C(s) symmetry with a strongly asymmetric hydrogen bond. The experimental geometric parameters are reproduced very closely by the B3LYP/cc-pVTZ method.  相似文献   

14.
Treatment of the ω-alkenyl substituted cyclohexane-1,3-dione enol derivatives (1), (11), and (13) with rhodium trichloride trihydrate leads to the corresponding resorcinol derivatives (2), (12), and (15) respectively. By contrast, the RhCl3.3H2O catalysed isomerisations of the related enol ethers (5) and (9) instead produce the dienones (6) and (10) respectively.  相似文献   

15.
A search for the enol structures of several amides YY'CHCONHPh with Y,Y' = electron-withdrawing groups (EWGs) was conducted. When Y = CN, Y' = CO(2)Me the solid structure is that of the enol (8b) MeO(2)CC(CN)=C(OH)NHPh, whereas in solution the NMR spectrum indicate the presence of both the amide MeO(2)CCH(CN)CONHPh (8a) and 8b. When Y = NO(2), Y' = CO(2)Et the main compound in CDCl(3) is the amide, but <10% of enol(s), presumably EtO(2)CC(NO(2))=C(OH)NHPh (9b), are also present. When Y = COEt, Y' = CO(2)Me or Y = COMe, Y' = CO(2)Et (10 and 11) enolization in solution and of 11 also in the solid state occurs at the carbonyl rather than at the ester site. With Y = Y' = CN a rapid exchange between the amide (NC)(2)CHCONHPh (12a) and a tautomer, presumably the enol, take place in several solvents on the NMR time scale. With YY' = barbituric acid moiety the species in DMSO-d(6) is an enol of an amide although which CONH group enolizes is unknown. B3LYP/6-31G calculations showed that the enol (NC)(2)C=C(OH)NH(2) (13b) is more stable by DeltaG of 0.4 kcal/mol than (NC)(2)CHCONH(2) (13a) due to a combination of stabilization of 13b and destabilization of 13a and both are much more stable than the hydroxyimine and ketene imine tautomers. The effect of Y,Y' and the solvent on the relative stabilization of enols of amides is discussed.  相似文献   

16.
New, short, and flexible procedures have been developed for syntheses of steroid and D-homo steroid skeletons. A Mukaiyama reaction between the silyl enol ether of 6-methoxytetralone and 2-methyl-2-cyclopentenone or carvone, with transfer of the silyl group to the receiving enone, gave a second silyl enol ether. Addition of a carbocation, generated under Lewis acid conditions from 3-methoxy-2-butenol, 3-ethoxy-3-phenyl-2-propenol or 3-methoxy-2-propenol to this second silyl enol ether gave adducts, which could not be cyclized by aldol condensation to (D-homo) steroid skeletons. The Mukaiyama-Michael reaction of the silyl enol ether of 6-methoxy tetralone with 2-methyl-2-cylopentenone gave a second silyl enol ether, which reacted in high yield with a carbocation generated from 3-hydroxy-3-(4-methoxyphenyl)propene. Ozonolysis of the double bond in this adduct gave a tricarbonyl compound (Zieglers triketone), which has been used before in the synthesis of 9,11-dehydroestrone methyl ether. A second synthesis of C17 substituted CD-trans coupled (D-homo) steroid skeletons has been developed via addition of a carbocation, generated with ZnBr2 from a Torgov reagent, to a silyl enol ether containing ring D precursor. The obtained seco steroids have been cyclized under formation of the 8-14 bond by treatment with acid. The double bonds in one of the cyclized products have been reduced to a C17-substituted all trans steroid skeleton.  相似文献   

17.
Summary The reaction of diazomethane with cis-3-methoxy-18-nor-1,3,5(10),9(11)-estratetraene-15,17-dione leads to a mixture of isomeric enol ethers (II) and (III), which were separated by fractional crystallization. By a number of investigational transformations the structure of the enol ether (III) was proved.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 5, pp. 843–846, May, 1965 Original article submitted April 24, 1963  相似文献   

18.
Laser flash photolyses of 2-, 3-, and 4-diazoacetylpyridines 8 give the corresponding pyridylketenes 7 formed by Wolff rearrangements, as observed by time-resolved infrared spectroscopy, with ketenyl absorptions at 2127, 2125, and 2128 cm(-1), respectively. Photolysis of 2-, 3-, and 4-8 in CH(3)CN containing n-BuNH(2) results in the formation of two transients in each case, as observed by time-resolved IR and UV spectroscopy. The initial transients are assigned as the ketenes 7, and this is confirmed by IR measurements of the decay of the ketenyl absorbance. The ketenes then form the amide enols 12, whose growth and decay are monitored by UV. Similar photolysis of diazoacetophenone leads to phenylketene (5), which forms the amide enol 17. For 3- and 4-pyridylketenes and for phenylketene, the ratios of rate constants for amination of the ketene and for conversion of the amide enol to the amide are 3.1, 7.7, and 22, respectively, while for the 2-isomer the same ratio is 1.8 x 10(7). The stability of the amide enol from 2-7 is attributed to a strong intramolecular hydrogen bond to the pyridyl nitrogen, and this is supported by the DFT calculated structures of the intermediates, which indicate this enol amide is stabilized by 12.8 kcal/mol relative to the corresponding amide enol from phenylketene. Calculations of the transition states indicate a 10.9 kcal/mol higher barrier for conversion of the 2-pyridyl amide enol to the amide as compared to that from phenylketene.  相似文献   

19.
The tandem isomerization-aldolization reaction between allyl alcohol and formaldehyde mediated by [Fe(CO)3] was studied with the density functional B3LYP method. Starting from the key [(enol)Fe(CO)3] complex, several reaction paths for the reaction with formaldehyde were explored. The results show that the most favorable reaction path involves first an enol/allyl alcohol ligand-exchange process followed by direct condensation of formaldehyde with the free enol. During this process, formation of the new C-C bond takes place simultaneously with a proton transfer between the enol and the aldehyde. Therefore, the role of [Fe(CO)3] is to catalyze the allyl alcohol to enol isomerization affording the free enol, which adds to the aldehyde in a carbonyl-ene type reaction. Similar results were obtained for the reaction between allyl alcohol and acetaldehyde.  相似文献   

20.
Trans-1-cyclohexenyl-phenyl-methanone (2) and enol 4, both key intermediates in the title reaction, react with each other in a Michael-type addition to form predominantly enol 10. This enol, kinetically stable but too reactive to be isolated, reveals its presence in the irradiated solutions by formation of the isomeric ketone 11 on acid catalysis, and by formation of the oxidation product 9 on exposure to atmospheric oxygen. In the absence of acid, formation of 10 competes significantly with the title reaction of cis-1-cyclohexenyl-phenyl-methanone (1). In a secondary photoreaction of 10, 1,6-hydrogen abstraction by the excited carbonyl group and cyclisation afford 13 and 14. Enols 4, 10, and 13, in striking contrast to enol ethers and to thermodynamically stable enols, are unstable towards atmospheric oxygen. Thus, 4 autoxidises to form five compounds (Ox-1 through Ox-5), 10 to form 9, and 13 to form 15.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号