共查询到20条相似文献,搜索用时 140 毫秒
1.
The results of combined X-ray and Mössbauer studies of structure and local magnetic ordering in massive substances Fe, Fe–Ni, Fe–Mn, Fe–Ni–Mn, Fe–Pt, Fe–Co and aerosol nanoparticles produced by their evaporation in rare Ar atmosphere are discussed. This technique provides a stochiometric composition of alloys in nanoparticles. The smallest (5–8 nm) particles for all alloys containing Fe 60–65% are shown to have a bcc structure whereas with doubling a size the particles acquire a fcc structure. This is explained by the fact that by cooling the particles in the course of preparation they quickly reach a state close to the equilibrium and, according to the constitution diagram, must decompose into two phases. Such decomposition in massive alloys was never observed at temperatures below 300°C because of diffusive difficulties. It is found that as-fresh aerosol particles are covered with an X-ray amorphous oxide shell, which is displayed in the room temperature Mössbauer spectra as a superparamagnetic doublet and is transformed into sextet at lower temperatures. An availability of the oxide shell has no practical influence on the particles structure. The obtained Mössbauer spectra are considered with the model suggested by R.J. Weiss in 1963, on existence of two-spin states in the high-temperature fcc modification of Fe and its alloys. Both states coexist, moreover, in the Mössbauer spectra the ferromagnetic state dominates at high temperature and anti-ferromagnetic one at low temperature. The ferromagnetic state manifests itself as a remnant of the frozen magnetic ordering of the high-temperature fcc modification in the resulting bcc structure, whereas the anti-ferromagnetic state is related to some fcc fraction retained under the particles quenching. 相似文献
2.
We propose a two-lattice method for direct determination of the recoilless fraction using a single room-temperature transmission Mössbauer measurement. The method is first demonstrated for the case of iron and metallic glass two-foil system and is next generalized for the case of physical mixtures of two powders. We further apply this method to determine the recoilless fraction of hematite and magnetite particles. Finally, we provide direct measurement of the recoilless fraction in nanohematite and nanomagnetite with an average particle size of 19nm. A list of values obtained for the recoilless fraction in various materials using the two-lattice method is given. 相似文献
3.
S. Sutradhar S. PatiS. Acharya S. DasD. Das P.K. Chakrabarti 《Journal of magnetism and magnetic materials》2012,324(7):1317-1325
Nanoparticles of Zn substituted lithium ferrite (Li0.32Zn0.36Fe2.32O4) have been prepared by a sol-gel method where the ultra-sonication technique has been adopted to reduce the agglomeration effect among the nanoparticles. The samples were heat-treated at three different temperatures and the formation of the nanocrystalline phase was confirmed by X-ray diffractograms (XRD). The average particle size of each sample has been estimated from the (311) peak of the XRD pattern using the Debye-Scherrer formula and the average sizes are in the range of 10-21 nm. The average particle size, crystallographic phase, etc. of some selected samples obtained from the high-resolution transmission electron microscopy are in agreement with those estimated from the XRD patterns. Static magnetic measurements viz., hysteresis loops, field cooled and zero field cooled magnetization versus temperature curves of some samples carried out by SQUID in the temperature range of 300 to 5 K clearly indicate the presence of superparamagnetic (SPM) relaxation of the nanoparticles in the samples. The maximum magnetization of the SPM sample annealed at 500 °C is quite high (68 Am2/Kg) and the hysteresis loops are almost square shaped with very low value of coercive field at room temperature (827.8 A/m). The particle size, magneto-crystalline anisotropy, etc. have been estimated from the detailed theoretical analysis of the static magnetic data. The dynamic magnetic behavior of the samples was also investigated by observing the ac hysteresis loops and magnetization versus field curves with different time windows at room temperatures. The different soft magnetic quantities viz., coercive field, magnetization, remanance, hysteresis losses, etc. were extracted from dynamic measurements. Dynamic measurements confirmed that the samples are in their mixed state of SPM and ordered ferrimagnetic particles, which is in good agreement with the results of static magnetic measurements. Mössbauer spectra of the samples recorded at room temperature (300 K) and at different temperatures down to 20 K confirmed the presence of the SPM relaxation of the nanoparticles of the samples. 相似文献
4.
The antiferromagnetic coupling at the Fe/Cr interfaces, inferred from the orientation of the Cr magnetic moments, is used to estimate the magnetic disorder resulting from the interfacial roughness in Fe/Cr multilayers. A crossover from in-plane to out-of-plane orientation of Cr moments depends on the energy cost in either case: (i) to break the interfacial Fe–Cr antiferromagnetic coupling or (ii) having sites with frustrated Cr–Cr antiferromagnetic coupling in the Cr interlayers. A quantitative model of the magnetic frustration due to interfacial disorder in Fe/Cr multilayer systems is described. The step edge density, or terrace size, required to break the interfacial Fe–Cr coupling and destroy the Fe–Fe interlayer exchange coupling is estimated. 相似文献
5.
A simple model, based on the relative occupancy of tetrahedral and octahedral sites by different cations, is proposed for the magnetocrystalline anisotropy of mixed ferrite nanoparticles. According to this model, the total magnetocrystalline anisotropy is the weighted average of the contributions of the anisotropies of Fe3+ and M2+ ions in A and B sites. The model predictions are confirmed in the case of cobalt-zinc ferrite. 相似文献
6.
Using Mössbauer spectroscopy as a function of ball milling time, it was found that nanomagnetite behaves differently than magnetite during mechanochemical activation. The phase sequence is determined by the original particle size of the powder. Magnetite suffers a phase transformation to hematite, while nanomagnetite (d = 19nm) gives rise to superparamagnetism as effect of prolonged milling. 相似文献
7.
ANISOTROPIC CHARACTERISTICS OF DEMAGNETIZATION CURVE FOR NANOCRYSTALLINE Nd-Fe-B MAGNET CALCULATED BY MICROMAGNETICS 下载免费PDF全文
The demagnetization curves for nanocrystalline Nd-Fe-B magnets of a stoichiometric composition were calculated by making use of the finite element technique of micromagnetics. The curve, especially iHc, varies in a wide range with the direction of applied field if the grain number N is taken to be small. With the increase of N, the range becomes smaller and the average of iHc decreases and approaches a limit iHc(N=∞). iHc for finite N is larger than, or at least equal to, iHc(N=∞). Jr/Js is weakly affected by N and the field direction. Jr/Js(N=∞) decreases with the increase of grain size L. These are larger than the experimental values for the Nd-rich Nd2.33Fe14B1.06Si0.21 magnets by ~0.05. iHc(N=∞) increases with the increase of L, and is close to or somewhat smaller than the experimental values of the Nd-rich magnet, as would be expected. In contrast, the curve calculated for the non-interacting grain system (Stoner-Wohlfarth model) of N≥30 depends neither on the field direction nor on N. 相似文献
8.
Advancing the early work in which a discontinuity of hyperfine fields at 57Fe nuclei in bulk iron and in aerosol Fe nanoparticles has been revealed by analyzing their Mössbauer spectra the present Letter evidences that the existence of several peaks in the hyperfine distribution (HFD) for bulk Fe is caused with the internal magnetic fields owing to its multidomain structure whereas aerosol Fe nanoparticles are single-domain and show only a unique peak in HFD. This argument has been corroborated by transformation of the HFD pattern for Fe foil after applying the external magnetic field of 0.03 T. 相似文献
9.
Gabriel Lavorato Mariella Alzamora Cynthia Contreras Gabriel Burlandy F. Jochen Litterst Elisa Baggio‐Saitovitch 《Particle & Particle Systems Characterization》2019,36(4)
The design of novel nanostructured magnetic materials requires a good understanding of the variation in the magnetic properties due to different synthesis conditions. In this work, four different procedures for fabricating Co‐ferrite nanoparticles with similar sizes between 7 and 10 nm are compared by studying their structural and magnetic properties. Non‐aqueous methods based on the thermal decomposition of metal acetylacetonates at high temperatures, either with or without surfactants, provide highly crystalline nanoparticles with large saturation magnetization values and a coherent reversal of the magnetic moment. However, variations in the density of defects and in the shape of the nanocrystals determine the distribution of switching fields and the effective magnetic anisotropy, which reaches up to ≈1 × 107 erg cm?3 for oleic acid‐capped 9 nm nanoparticles. It is shown that the saturation magnetization values for nanoparticles produced by different methods are in the range between 49 and 95 emu g?1 due to differences in the stoichiometry, in the cation occupancy, in the magnetic disorder and in the spin canting of the magnetic sub‐lattices, the latter evaluated by in‐field Mössbauer spectroscopy. 相似文献
10.
In the so-called ‘step-shape’ angular spin distribution model for layered systems, the non-collinear directions of the atomic magnetic moments are confined to the film plane and form a homogeneous fan spanning inside an (in-plane) angular interval Δφ centered at an angle φ0. A general approach for deriving the two parameters φ0 and Δφ via 57Fe Mössbauer spectroscopy measurements is discussed. The analysis extends our previously reported treatment, which assumed that the angular aperture Δφ develops symmetrically versus a fixed direction φ0 (e.g., the in-plane easy axis of magnetization) oriented either along or perpendicular to the in-plane projection of the Mössbauer γ-ray direction. The proposed approach is also applicable for those cases when not only the spin aperture Δφ is changing but also the aperture center φ0 is rotating under the influence of different external parameters, such as applied field, temperature, stress, etc. The method is suitable for applications to nanoscale layered heterostructures with in-plane uniaxial or unidirectional magnetic anisotropy. The method is applied to experimental data obtained on a 2-nm thick defected Fe layer with in-plane magnetic texture. 相似文献
11.
R.K. Singh M. Manivel RajaR.P. Mathur M. Shamsuddin 《Journal of magnetism and magnetic materials》2011,323(5):574-578
The influence of Fe additions on the martensitic transformation and magnetic properties of Mn-rich Ni-Mn-Ga alloys was investigated by substituting either 1 at% Fe for each atomic species or by substituting Ni with varying amounts of Fe. The magnetic structure of the alloys was studied using 57Fe Mössbauer spectroscopy. Mössbauer spectra revealed typical paramagnetic features in Mn-rich Ni-Mn-Ga-Fe alloys owing to the preferential site occupancy of Fe atoms at Ni sites. The evolution of the magnetic properties and phase stability has been correlated with the chemical and atomic ordering in these alloys. 相似文献
12.
The work presents results of the research on thermal transformations of iron minerals which are present in basalt rock from Góra Obłoga in Pogórze Złotoryjskie District. The rock under study shows microporphyric texture and compact microstructure and contained: olivine, augite, diopside, plagioclases, serpentines, zeolites, apatite and also opaque minerals (oxides). The basalt was annealing within the temperature range between 573–1473 K, in air, and then, microscopic observations, X-ray diffraction as well as Mössbauer spectroscopy measurements were performed. During the heat treatment of the rock it was found that the content of olivine and augite was gradually decreasing due to progressive oxidation of iron compounds, resulting in formation of magnetite and hematite. The comparison of the results of thermal Mössbauer spectral analysis showed that transformation of iron minerals occurred already under conditions when the basic rock mass underwent only insignificant changes. 相似文献
13.
R. Alexandrescu I. MorjanF. Dumitrache R. BirjegaC. Fleaca I. SoareL. Gavrila C. LuculescuG. Prodan V. KuncserG. Filoti 《Applied Surface Science》2011,257(12):5460-5464
Complex oxides demonstrate specific electric and magnetic properties which make them suitable for a wide variety of applications, including dilute magnetic semiconductors for spin electronics. A tin-iron oxide Sn1−xFexO2 nanoparticulate material has been successfully synthesized by using the laser pyrolysis of tetramethyl tin-iron pentacarbonyl-air mixtures. Fe doping of SnO2 nanoparticles has been varied systematically in the 3-10 at% range. As determined by EDAX, the Fe/Sn ratio (in at%) in powders varied between 0.14 and 0.64. XRD studies of Sn1−xFexO2 nanoscale powders, revealed only structurally modified SnO2 due to the incorporation of Fe into the lattice mainly by substitutional changes. The substitution of Fe3+ in the Sn4+ positions (Fe3+ has smaller ionic radius as compared to the ionic radius of 0.69 Å for Sn4+) with the formation of a mixed oxide Sn1−xFexO2 is suggested. A lattice contraction consistent with the determined Fe/Sn atomic ratios was observed. The nanoparticle size decreases with the Fe doping (about 7 nm for the highest Fe content). Temperature dependent 57Fe Mössbauer spectroscopy data point to the additional presence of defected Fe3+-based oxide nanoclusters with blocking temperatures below 60 K. A new Fe phase presenting magnetic order at substantially higher temperatures was evidenced and assigned to a new type of magnetism relating to the dispersed Fe ions into the SnO2 matrix. 相似文献
14.
Mössbauer spectroscopic studies of BaFeO4 and K2FeO4 as prepared, then either sealed, or exposed to air, or exposed to moist air for a period up to more than one year, were performed at room temperature as a function of time. Some of the samples were studied as a function of temperature down to 4.2 K. K2FeO4 and BaFeO4 after preparation, exhibit a pure Fe6+ spectrum. K2FeO4 shows low stability. After a period of 14 months in a sealed sample holder, the spectrum exhibits 83% noncrystalline Fe3+, as Fe2O3 nanoparticles, and only 17% of the original Fe6+. BaFeO4 sealed, or exposed to dry air disintegrates slowly, exhibiting a spectrum composed of three subspectra. In addition to the original Fe6+ and final Fe3+ subspectra, a subspectrum, of an intermediate stage of a crystalline Fe4+ system, is present. In the first month the increase of the Fe3+ subspectrum is 15%, and that of the Fe4+ is 8%. BaFeO4 exposed to moist air, disintegrates at a very fast rate. The Fe3+ subspectrum, due to Fe2O3 nanoparticles, increases in the first days at the rapid rate of ∼13%/day, and there is no evidence for Fe4+ in the spectrum. The Fe6+ in BaFeO4, Fe3+ and Fe4+ in the disintegrated systems are all magnetically ordered at 4.2 K. Above 90 K the Fe3+ subspectra exhibit a superposition of a paramagnetic doublet and a diffuse magnetic sextet, with relative intensities changing with temperature, and changing from sample to sample according to their blocking temperatures, which are determined by the distribution in size of the nanoparticles. 相似文献
15.
Frequency spectra of quantum beats (QB) in nuclear forward scattering (NFS) are analysed and compared to Mössbauer spectra. Lineshape, number of lines, sensitivity to minor sites, and other specific properties of the frequency spectra are discussed. The most characteristic case of combined magnetic and quadrupole interactions is considered in detail for 57Fe. Pure magnetic Zeeman splitting corresponds to a eight-line spectrum of QB, six of which show the same energy separation as the six lines in Mössbauer spectra. Two other lines (called 2′ and 3′) are the lower-energy satellites of the lines 2 and 3. As the quadrupole interaction E
Q appears, the satellites remain unsplit in the quantum beat frequency spectra, as well as the first (zero-frequency) and the 6th (largest frequency) lines. Each of the lines 3 and 5 generates a doublet split by 2E
Q, and the lines 2 and 4 generate triplets. In QB frequency spectra (QBFS) of thin absorbers of GdFeO3 we demonstrate the enhanced spectral resolution compared to Mössbauer spectra. Small particle size in an antiferromagnet (Fe2O3) was found to affect the QBFS via enhancement of the intensity around zero-frequencies. An asymmetric hyperfine field distribution mixes up into the hybridization with dynamical beats, which enlarges the frequencies of the low-lying QBFS lines and makes their shifts relatively large compared to the shift of the highest-frequency line. 相似文献
16.
Nuclear resonance reflectivity from a [57Fe/Cr]30 multilayer with the Synchrotron Mössbauer Source 下载免费PDF全文
Marina A. Andreeva Roman A. Baulin Aleksandr I. Chumakov Rudolf Rüffer Gennadii V. Smirnov Yurii A. Babanov Denis I. Devyaterikov Mikhail A. Milyaev Dmitrii A. Ponomarev Lazar N. Romashev Vladimir V. Ustinov 《Journal of synchrotron radiation》2018,25(2):473-483
Mössbauer reflectivity spectra and nuclear resonance reflectivity (NRR) curves have been measured using the Synchrotron Mössbauer Source (SMS) for a [57Fe/Cr]30 periodic multilayer, characterized by the antiferromagnetic interlayer coupling between adjacent 57Fe layers. Specific features of the Mössbauer reflectivity spectra measured with π‐polarized radiation of the SMS near the critical angle and at the `magnetic' maximum on the NRR curve are analyzed. The variation of the ratio of lines in the Mössbauer reflectivity spectra and the change of the intensity of the `magnetic' maximum under an applied external field has been used to reveal the transformation of the magnetic alignment in the investigated multilayer. 相似文献
17.
A. Bhattacharjee P.J. van Koningsbruggen Joel S. Miller 《Journal of Physics and Chemistry of Solids》2008,69(11):2713-2718
The 57Fe Mössbauer spectroscopy of mononuclear [Fe(II)(isoxazole)6](ClO4)2 has been studied to reveal the thermal spin crossover of Fe(II) between low-spin (S=0) and high-spin (S=2) states. Temperature-dependent spin transition curves have been constructed with the least-square fitted data obtained from the Mössbauer spectra measured at various temperatures between 84 and 270 K during a cooling and heating cycle. This compound exhibits an unusual temperature-dependent spin transition behaviour with TC(↓)=223 and TC(↑)=213 K occurring in the reverse order in comparison to those observed in SQUID observation and many other spin transition compounds. The compound has three high-spin Fe(II) sites at the highest temperature of study of which two undergo spin transitions. The compound seems to undergo a structural phase transition around the spin transition temperature, which plays a significant role in the spin crossover behaviour as well as the magnetic properties of the compound at temperatures below TC. The present study reveals an increase in high-spin fraction upon heating in the temperature range below TC, and an explanation is provided. 相似文献
18.
We report the structural and magnetic properties of as-deposited and thermally annealed FePt/C granular multilayer films. The as-deposited system exhibits a disordered fcc FePt phase with an average grain size of 3 nm. Thermal annealing at 650 °C results in partial L10 ordering and an associated grain growth to 7 nm. Mössbauer measurements show that there is no non-magnetic component present, suggesting that carbon resides only in the grain boundary region. The ferromagnetic grains are magnetically decoupled. 相似文献
19.
Stanislaw Dzwigaj Lorenzo Stievano Michel Che 《Journal of Physics and Chemistry of Solids》2007,68(10):1885-1891
Fe-containing SiBEA zeolites were prepared by a two-step postsynthesis method: creation of vacant T-sites by dealumination of tetraethylammonium BEA zeolite with nitric acid and then impregnation of the resulting SiBEA zeolite with an aqueous solution of Fe(NO3)3. X-ray diffraction shows that iron is incorporated in SiBEA at lattice sites. The presence of Fe in its oxidation state +3 and at isolated tetrahedral sites for low metal content, was demonstrated by diffuse reflectance UV-vis, EPR and Mössbauer spectroscopy. For high iron content, diffuse reflectance UV-vis and Mössbauer spectra revealed the additional presence of extra-lattice FeOx oligomers and superparamagnetic Fe-oxyhydroxide. Mössbauer spectroscopy identified superparamagnetic Fe-oxyhydroxide as the main phase when basic conditions are used for the preparation. 相似文献
20.
Maria C. Blanco Diego G. Franco Yamile Jalit Elisa V. Pannunzio Miner Graciele Berndt Andrea Paesano Jr. Gladys Nieva Raúl E. Carbonio 《Physica B: Condensed Matter》2012,407(16):3078-3080
The samples Bi2BB′O7, with B=Cr and Fe and B′=Nb, Ta and Sb were prepared by solid state method. The crystallographic structure was investigated on the basis of X-ray powder diffraction data. Rietveld refinements show that the crystal structure is cubic, space group Fd-3m. The Bi3+ cation on the eight-coordinate pyrochlore A-site shows displacive disorder, as a consequence of its lone pair electron con?guration. There is also a considerable A-site disorder shown by Rietveld Analysis and confirmed in the case of the iron containing samples with Mössbauer spectroscopy. The magnetic measurements show paramagnetic behavior at all temperatures for the Cr oxides. The Fe pyrochlores show antiferromagnetic order around 10 K. 相似文献