首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 673 毫秒
1.
2.
Molecular dynamics simulations have been carried out for the equation of state and percolation properties of the Weeks-Chandler-Andersen (WCA) system in its fluid phase as functions of density and temperature. The compressibility factor Z collapses well for the various isotherms, using an effective particle diameter for the WCA particle which is (in the usual WCA reduced units) sigma(e)=2(16)(1+T)(16), where T is the temperature. A corresponding "effective" packing fraction is zeta(e)=pisigma(e) (3)N6V, for N particles in volume V, which therefore scales out the effects of temperature. Using zeta(e) the simulation derived Z can be fitted to a simple analytic form which is similar to the Carnahan-Starling hard sphere equation of state and which is valid at all temperatures and densities where the WCA fluid is thermodynamically stable. The data, however, are not scalable onto the hard sphere equation of state for the complete packing fraction range. We explored the continuum percolation behavior of the WCA fluids. The percolation distance sigma(p) for the various states collapses well onto a single curve when plotted as sigma(p)sigma(e) against zeta(e). The ratio sigma(p)sigma(e) exhibits a monotonic decrease with increasing zeta(e) between the percolation line for permeable spheres and the glass transition limit, where sigma(p)sigma(e) approximately 1. The percolation packing fraction was calculated as a function of effective packing fraction and fitted to an empirical expression. The local coordination number at the percolation threshold showed a transition between the soft core and hard core limits from ca. 2:74 to 1:5, as previously demonstrated in the literature for true hard spheres. A number of simple analytic expressions that represent quite well the percolation characteristics of the WCA system are proposed.  相似文献   

3.
We present the phase diagram of a system of mesogenic top-shaped molecules based on the Parsons-Lee density functional theory and Monte Carlo simulation. The molecules are modeled as a hard spherocylinder with a hard sphere embedded in its center. The stability of five different phases is studied, namely, isotropic, nematic, smectic A, smectic C, and columnar phases. The positionally ordered phases are investigated only for the case of parallel alignment. It is found that the central spherical unit destabilizes the nematic with respect to the isotropic phase, while increasing the length of the cylinder has the opposite effect. Also, the central hard sphere has a strong destabilizing effect on the smectic A phase, due the inefficient packing of the molecules into layers. For large hard sphere units the smectic A phase is completely replaced by a smectic C structure. The columnar phase is first stabilized with increasing diameter of the central unit, but for very large hard sphere units it becomes less stable again. The density functional results are in good agreement with the simulations.  相似文献   

4.
Starting from the second equilibrium equation in the BBGKY hierarchy under the Kirkwood superposition closure, we implement a new method for studying the asymptotic decay of correlations in the hard disk fluid in the high density regime. From our analysis and complementary numerical studies, we find that exponentially damped oscillations can occur only up to a packing fraction η(?)~0.718, a value that is in substantial agreement with the packing fraction, η~0.723, believed to characterize the transition from the ordered solid phase to a dense fluid phase, as inferred from Mak's Monte Carlo simulations [Phys. Rev. E 73, 065104 (2006)]. Next, we show that the same method of analysis predicts that the exponential damping of oscillations in the hard sphere fluid becomes impossible when λ=4nπσ(3)[1+H(1)]≥34.81, where H(1) is the contact value of the correlation function, n is the number density, and σ is the sphere diameter in exact agreement with the condition, λ≥34.8, which is first reported in a numerical study of the Kirkwood equation by Kirkwood et al. [J. Chem. Phys. 18, 1040 (1950)]. Finally, we show that our method confirms the absence of any structural transition in hard rods for the entire range of densities below close packing.  相似文献   

5.
The conformational properties and static structure of freely jointed hard-sphere chains in matrices composed of stationary hard spheres are studied using Monte Carlo simulations and integral equation theory. The simulations show that the chain size is a nonmonotonic function of the matrix density when the matrix spheres are the same size as the monomers. When the matrix spheres are of the order of the chain size the chain size decreases monotonically with increasing matrix volume fraction. The simulations are used to test the replica-symmetric polymer reference interaction site model (RSP) integral equation theory. When the simulation results for the intramolecular correlation functions are input into the theory, the agreement between theoretical predictions and simulation results for the pair-correlation functions is quantitative only at the highest fluid volume fractions and for small matrix sphere sizes. The RSP theory is also implemented in a self-consistent fashion, i.e., the intramolecular and intermolecular correlation functions are calculated self-consistently by combining a field theory with the integral equations. The theory captures qualitative trends observed in the simulations, such as the nonmonotonic dependence of the chain size on media fraction.  相似文献   

6.
Here we discuss the statistical mechanics of polydisperse liquid crystal systems. Three different kinds of liquid crystal systems are treated: nematic order in thermotropic Maier-Saupe-like systems and in lyotropic Onsager-like rod systems, and smectic order in a perfectly aligned hard rod fluid. In the first two cases we calculate the broadening of the isotropic-nematic transition. In the last case the suppression of smectic order is dealt with. We discuss the relationship between real systems and the models discussed in the paper.  相似文献   

7.
Monte Carlo simulations were performed on semiflexible polymer chains with the goal of delineating their isotropic-nematic (IN) and gas-liquid coexistence envelopes. The chain monomers are spherical beads that interact via a square-well potential with all other beads. Bonded beads are connected by strings chosen so that bond length varies between 1.01sigma and 1.05sigma (where sigma is the hard sphere diameter). The stiffness of the molecules is controlled via a potential between beads separated by two bonds; this potential restricts the distance between these beads to be between 2.02sigma and 2.1sigma. The vapor-liquid coexistence and IN coexistence curves are obtained using computer simulations. An IN transition is found for 10相似文献   

8.
We implemented the replica exchange Monte Carlo technique to produce the equation of state of hard 1:5 aspect-ratio oblate ellipsoids for a wide density range. For this purpose, we considered the analytical approximation of the overlap distance given by Bern and Pechukas and the exact numerical solution given by Perram and Wertheim. For both cases we capture the expected isotropic-nematic transition at low densities and a nematic-crystal transition at larger densities. For the exact case, these transitions occur at the volume fraction 0.341, and in the interval 0.584-0.605, respectively.  相似文献   

9.
Following previous work [G. Odriozola and F. de J. Guevara-Rodri?guez, J. Chem. Phys. 134, 201103 (2011)], the replica exchange Monte Carlo technique is used to produce the equation of state of hard 1:5 aspect-ratio oblate ellipsoids for a wide density range. Here, in addition to the analytical approximation of the overlap distance given by Berne and Pechukas (BP) and the exact numerical solution of Perram and Wertheim, we tested a simple modification of the original BP approximation (MBP) which corrects the known T-shape mismatch of BP for all aspect ratios. We found that the MBP equation of state shows a very good quantitative agreement with the exact solution. The MBP analytical expression allowed us to study size effects on the previously reported results. For the thermodynamic limit, we estimated the exact 1:5 hard ellipsoid isotropic-nematic transition at the volume fraction 0.343 ± 0.003, and the nematic-solid transition in the volume fraction interval (0.592 ± 0.006)-(0.634 ± 0.008).  相似文献   

10.
We introduce a geometric analysis of random sphere packings based on the ensemble averaging of hard-sphere clusters generated via local rules including a nonoverlap constraint for hard spheres. Our cluster ensemble analysis matches well with computer simulations and experimental data on random hard-sphere packing with respect to volume fractions and radial distribution functions. To model loose as well as dense sphere packings various ensemble averages are investigated, obtained by varying the generation rules for clusters. Essential findings are a lower bound on volume fraction for random loose packing that is surprisingly close to the freezing volume fraction for hard spheres and, for random close packing, the observation of an unexpected split peak in the distribution of volume fractions for the local configurations. Our ensemble analysis highlights the importance of collective and global effects in random sphere packings by comparing clusters generated via local rules to random sphere packings and clusters that include collective effects.  相似文献   

11.
In an athermal blend of nanoparticles and homopolymer near a hard wall, there is a first order phase transition in which the nanoparticles segregate to the wall and form a densely packed monolayer above a certain nanoparticle density. Previous investigations of this phase transition employed a fluids density functional theory (DFT) at constant packing fraction. Here we report further DFT calculations to probe the robustness of this phase transition. We find that the phase transition also occurs in athermal systems at constant pressure, the more natural experimental condition than constant packing fraction. Adding nanoparticle-polymer attractions increases the nanoparticle transition density, while sufficiently strong attractions suppress the first-order transition entirely. In this case the systems display a continuous transition to a bulk layered state. Adding attractions between the polymers and the wall has a similar effect of delaying and then suppressing the first-order nanoparticle segregation transition, but does not lead to any continuous phase transitions.  相似文献   

12.
Monte Carlo simulations and finite-size scaling analysis have been carried out to study the critical behavior in a two-dimensional system of particles with two bonding sites that, by decreasing temperature or increasing density, polymerize reversibly into chains with discrete orientational degrees of freedom and, at the same time, undergo a continuous isotropic-nematic (IN) transition. A complete phase diagram was obtained as a function of temperature and density. The numerical results were compared with mean field (MF) and real space renormalization group (RSRG) analytical predictions about the IN transformation. While the RSRG approach supports the continuous nature of the transition, the MF solution predicts a first-order transition line and a tricritical point, at variance with the simulation results.  相似文献   

13.
Molecular dynamics simulations have been used to calculate the self-diffusion coefficient, D, of the hard sphere fluid over a wide density range and for different numbers of particles, N, between 32 and 10 976. These data are fitted to the relationship D = D(infinity) - AN(-alpha) where the parameters D(infinity), A, and alpha are all density-dependent (the temperature dependence of D can be trivially scaled out in all cases). The value alpha = 1/3 has been predicted on the basis of hydrodynamic arguments. In the studied system size range, the best value of alpha is approximately 1/3 at intermediate packing fractions of approximately 0.35, but increases in the low- and high-density extremes. At high density, the scaling follows more closely that of the thermodynamic properties, that is, with an exponent of order unity. At low packing fractions (less than approximately 0.1), the exponent increases again, appearing to approach a limiting value of unity in the zero-density limit. The origin of this strong N dependence at low density probably lies in the divergence in the mean path between collisions, as compared with the dimensions of the simulation cell. A new simple analytical fit formula based on fitting to previous simulation data is proposed for the density dependence of the shear viscosity. The Stokes-Einstein relationship and the dependence of D on the excess entropy were also explored. The product Deta(s)p with p = 0.975 was found to be approximately constant, with a value of 0.15 in the packing fraction range between 0.2 and 0.5.  相似文献   

14.
Results are presented of a systematic study of the transport properties of the rough hard sphere fluid. The rough hard sphere fluid is a simple model consisting of spherical particles that exchange linear and angular momenta, and energy upon collision. This allows a study of the sole effect of particle rotation upon fluid properties. Molecular dynamics simulations have been used to conduct extensive benchmark calculations of self-diffusion, shear and bulk viscosity, and thermal conductivity coefficients. As well, the validity of several kinetic theory equations have been examined at various levels of approximation as a function of density and translational-rotational coupling. In particular, expressions from Enskog theory using different numbers of basis sets in the representation of the distribution function were tested. Generally Enskog theory performs well at low density but deviates at larger densities, as expected. The dependence of these expressions upon translational-rotational coupling was also examined. Interestingly, even at low densities, the agreement with simulation results was sometimes not even qualitatively correct. Compared with smooth hard sphere behaviour, the transport coefficients can change significantly due to translational-rotational coupling and this effect becomes stronger the greater the coupling. Overall, the rough hard sphere fluid provides an excellent model for understanding the effects of translational-rotational coupling upon transport coefficients.  相似文献   

15.
We present a hybrid method to investigate the isotropic-nematic (I-N) transition in athermal solutions of rod-coil copolymers. This method incorporates the scaled-particle theory for semiflexible chains with two-chain Monte Carlo simulation for the osmotic second virial coefficient and for the angle-dependent excluded volume. We compare the theoretical prediction with Monte Carlo simulations for fused rod-coil copolymers and find good agreement for both the equation of state and the orientational order parameter. The theory is also used to examine the effects of the bond length, the chain length, and the chain composition on orientational ordering in athermal solutions of rod-coil block copolymers. It predicts I-N transition in rod-coil copolymers with fixed rod length but a variable flexible tail in good agreement with experiments.  相似文献   

16.
In porous materials, metal sites with coordinate solvents offer opportunities for many applications, especially those promoted by host–guest chemistry, but such sites are especially hard to create for Li‐based materials, because unlike transition metals, lithium does not usually possess a high‐enough coordination number for both framework construction and guest binding. This challenge is addressed by mimicking the functional group ratio and metal‐to‐ligand charge ratio in MOF‐74. A family of rod‐packing lithium–organic frameworks (CPM‐47, CPM‐48, and CPM‐49) were obtained. These materials exhibit an extremely high density of guest‐binding lithium sites. Also unusual is the homo‐helical rod‐packing in the CPM series, as compared to the hetero‐helical rod packing by helices of opposite handedness in MOF‐74. This work demonstrates new chemical and structural possibilities in developing a record‐setting high density of guest‐binding metal sites in inorganic–organic porous materials.  相似文献   

17.
A bifurcational analysis is performed on Doi's equation of nematodynamics that describes the non-equlibrium isotropic-nematic phase transition of rigid rod polymers in the presence of steady biaxial stretching flow. The symmetry of the flow and of the governing order parameter equations are shown to be the source of a rich bifurcation, symmetry breaking, and multistability behavior involving two physically equivalent biaxial nematic phases, one uniaxial nematic phase and one uniaxial paranematic phase. According to the relative intensity of the nematic ordering field and stretching rate, the uniaxial isotropic-biaxial nematic transition may be continuous (2nd order), discontinuous (1st order), or it may exhibit a tricritical non-equilibrium phase transition point. The solutions to the Doi equations of nematodynamics are found to be consistent with those of Khokhlov and Semenov [Macromolecules 15 , 1272 (1982)], which are based on a version of the Onsager theory of isotropic-nematic phase transitions. The present simulations provide a useful guide for orientation control in biaxial stretching flows.  相似文献   

18.
The depletion potential between a hard sphere and a planar hard wall, or two hard spheres, imposed by suspended rigid spherocylindrical rods is computed by the acceptance ratio method through the application of Monte Carlo simulation. The accurate results and ideal-gas approximation results of the depletion potential are determined with the acceptance ratio method in our simulations. For comparison, the depletion potentials are also studied by using both the density functional theory and Derjaguin approximations. The density profile as a function of positions and orientations of rods, used in the density functional theory, is calculated by Monte Carlo simulation. The potential obtained by the acceptance ratio method is in good agreement with that of density functional theory under the ideal-gas approximation. The comparison between our results and those of other theories suggests that the acceptance ratio method is the only efficient method used to compute the depletion potential induced by nonspherical colloids with the volume fraction beyond the ideal-gas approximation.  相似文献   

19.
Hard-sphere fluids confined between parallel plates at a distance D apart are studied for a wide range of packing fractions including also the onset of crystallization, applying Monte Carlo simulation techniques and density functional theory. The walls repel the hard spheres (of diameter σ) with a Weeks-Chandler-Andersen (WCA) potential V(WCA)(z) = 4ε[(σ(w)/z)(12) - (σ(w)/z)(6) + 1/4], with range σ(w) = σ/2. We vary the strength ε over a wide range and the case of simple hard walls is also treated for comparison. By the variation of ε one can change both the surface excess packing fraction and the wall-fluid (γ(wf)) and wall-crystal (γ(wc)) surface free energies. Several different methods to extract γ(wf) and γ(wc) from Monte Carlo (MC) simulations are implemented, and their accuracy and efficiency is comparatively discussed. The density functional theory (DFT) using fundamental measure functionals is found to be quantitatively accurate over a wide range of packing fractions; small deviations between DFT and MC near the fluid to crystal transition need to be studied further. Our results on density profiles near soft walls could be useful to interpret corresponding experiments with suitable colloidal dispersions.  相似文献   

20.
A methodology for the formulation of density functional approximation (DFA) for nonuniform nonhard sphere fluids is proposed by following the spirit of a partitioned density functional approximation [Zhou, Phys. Rev. E 68, 061201 (2003)] and mapping the hard core part onto an effective hard sphere whose high order part of the functional perturbation expansion is treated by existing hard sphere DFAs. The resultant density functional theory (DFT) formalism only needs a second order direct correlation function and pressure of the corresponding coexistence bulk fluid as inputs and therefore can be applicable to both supercritical and subcritical temperature cases. As an example, an adjustable parameter-free version of a recently proposed Lagrangian theorem-based DFA is imported into the present methodology; the resultant DFA is applied to Lennard-Jones fluid under the influence of external fields due to a single hard wall, two hard walls separated by a small distance, a large hard sphere, and a spherical cavity with a hard wall. By comparing theoretical predictions with previous simulation data and those recently supplied for coexistence bulk fluid situated at "dangerous" regions, it was found that the present DFA can predict subtle structure change of the density profile and therefore is the most accurate among all existing DFT approaches. A detailed discussion is given as to why so excellent DFA for nonhard sphere fluids can be drawn forth from the present methodology and how the present methodology differs from previous ones. The methodology can be universal, i.e., it can be combined with any other hard sphere DFAs to construct DFA for other nonhard sphere fluids with a repulsive core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号