首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(vinylalcohol) (PVA)/poly(ethyleneimine) (PEI)/poly(ethyleneglycol) (PEG) blend membranes were prepared by solution casting followed by solvent evaporation. The effects of the blend polymer composition on the membrane structure and CO2/N2 permeation characteristics were investigated. IR spectroscopy evidenced strong hydrogen bonding interactions between amorphous PVA and PEI, and weaker interactions between PVA and PEG. DSC studies showed that PVA crystallization was partially inhibited by the interactions between amorphous PVA and PEI blend, in which PEG separated into nodules. The CO2 permeability decreased with an increase in CO2 partial pressure in feed gas, while the N2 permeability remained constant. This result indicated that only CO2 was transported by the facilitated transport mechanism. The CO2 and N2 permeabilities increased monotonically with the PEI content in the blend membranes, whereas the ideal selectivity of CO2 to N2 transport showed a maximum. When CO2 is humidified, its permeability through the blend membranes is much higher than that of dry CO2, but the change in permeability due to the presence of humidity is reversible.  相似文献   

2.
A defect-free ultra thin PVAm/PVA blend facilitated transport membrane cast on a porous polysulfone (PSf) support was developed and evaluated in this study. The target membrane was prepared from commercial polyvinyl amine (PVAm) and polyvinyl alcohol (PVA). Effects of experimental conditions were investigated for a CO2–N2 mixed gas. A CO2/N2 separation factor of up to 174 and a CO2 permeance up to 0.58 m3(STP)/(m2 h bar) were documented. Experimental results suggest that CO2 is being transported according to the facilitated transport mechanism through this membrane. The fixed amino groups in the PVAm matrix function as CO2 carriers to facilitate the transport whereas the PVA adds mechanical strength to the blend by entanglement of the polymeric chains hence creating a supporting network. The good mechanical properties obtained from the blend of PVA with PVAm, enabled an ultra thin selective layer (down to 0.3 μm) to be formed on PSf support (with MWCO of 50,000), resulted in both high selectivity and permeance. The PVAm/PVA blend membrane also exhibited a good stability during a 400 h test.  相似文献   

3.
In this study a thin film composite (TFC) membrane with a Pebax/Task-specific ionic liquid (TSIL) blend selective layer was prepared. Defect-free Pebax/TSIL layers were coated successfully on a polysulfone ultrafiltration porous support with a polydimethylsiloxane (PDMS) gutter layer. Different parameters in the membrane preparation (e.g. concentration, coating time) were investigated and optimized. The morphology of the membranes was studied by scanning electron microscopy (SEM), while the thermal properties and chemical structures of the membrane materials were investigated by thermo-gravimetric analyzer (TGA), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The CO2 separation performance of the membrane was evaluated using a mixed gas permeation test. Experimental results show that the incorporation of TSIL into the Pebax matrix can significantly increase both CO2 permeance and CO2/N2 selectivity. With the presence of water vapor, the membrane exhibits the best CO2/N2 selectivity at a relative humidity of around 75%, where a CO2 permeance of around 500 GPU and a CO2/N2 selectivity of 46 were documented. A further increase in the relative humidity resulted in higher CO2 permeance but decreased CO2/N2 selectivity. Experiments also show that CO2 permeance decreases with a CO2 partial pressure increase, which is considered a characteristic in facilitated transport membranes.  相似文献   

4.
Faujasite-type zeolite membranes were reproducibly synthesized by hydrothermal reaction on the outer surface of a porous α-alumina support tube of 30 or 200 mm in length. The membrane properties were evaluated by CO2 separation from an equimolar mixture of CO2 and N2 at a permeation temperature of 40°C. CO2 permeance and CO2/N2 selectivity of the NaY-type membranes were in the ranges of 0.4×10−6–2.5×10−6 mol m−2 s−1 Pa−1 and 20–50, respectively. The NaY-type membranes were ion-exchanged with alkali and alkaline earth cations. The LiY-type membrane showed the highest N2 permeance and the lowest CO2/N2 selectivity. The KY-type membrane gave the highest CO2/N2 selectivity. The NaY-type membrane was stable against exposure to air at 400°C. NaX-type zeolite membranes, formed by decreasing the ratio of SiO2/Al2O3 in the starting solution, exhibited lower CO2 permeances and higher CO2/N2 selectivities than those of the NaY-type zeolite membranes.  相似文献   

5.
With the goal of obtaining a water soluble polymeric carrier for preparation of fixed facilitated transport membranes, a water soluble amino containing chitosan derivative was prepared through Michael-addition reaction between chitosan and ethyl acrylate followed by amidation of the ester groups with an appropriate diamine. This derivative was characterized using 1H-NMR spectroscopy. Then, facilitated transport membranes were prepared by casting a thin layer of chitosan derivative/poly(vinyl alcohol) blend on a porous polysolfune support; and the effect of fixed carrier’s content, feed temperature and feed pressure on the CO2 permeance, and CO2/CH4 selectivity of produced membranes were studied. A facilitated transport mechanism for CO2 through this membrane was concluded.  相似文献   

6.
In this investigation, polymeric nanocomposite membranes(PNMs) were prepared via incorporating zinc oxide(ZnO) into poly(ether-block-amide)(PEBAX-1074) polymer matrix with different loadings. The neat membrane and nanocomposite membranes were prepared via solution casting and solution blending methods, respectively. The fabricated membranes were characterized by field emission scanning electron microscopy(FESEM) to survey cross-sectional morphologies and thermal gravimetric analysis(TGA)to study thermal stability. Fourier transform infrared(FT-IR) and X-ray diffraction(XRD) analyses were also employed to identify variations of the chemical bonds and crystal structure of the membranes, respectively. Permeation of pure gases, CO_2, CH_4 and N_2 through the prepared neat and nanocomposite membranes was studied at pressures of 3–18 bar and temperature of 25 °C. The obtained results showed that the fabricated nanocomposite membranes exhibit better separation performance compared to the neat PEBAX membrane in terms of both permeability and selectivity. As an example, at temperature of 25 °C and pressure of 3 bar, CO_2 permeability, ideal CO_2/CH_4 and CO_2/N_2 selectivity values for the neat PEBAX membrane are 110.67 Barrer, 11.09 and 50.08, respectively, while those values are 152.27 Barrer,13.52 and 62.15 for PEBAX/ZnO nanocomposite membrane containing 8 wt% ZnO.  相似文献   

7.
We report that 6FDA-2,6-DAT polyimide can be used to fabricate hollow fiber membranes with excellent performances for CO2/CH4 separation. In order to simplify the hollow fiber fabrication process and verify the feasibility of 6FDA-2,6-DAT hollow fiber membranes for CO2/CH4 separation, a new one-polymer and one-solvent spinning system (6FDA-2,6-DAT/N-methyl-pyrrolidone (NMP)) with much simpler processing conditions has been developed and the separation performance of newly developed 6FDA-2,6-DAT hollow fiber membranes has been further studied under the pure and mixed gas systems.Experimental results reveal that 6FDA-2,6-DAT asymmetric composite hollow fiber membranes have a strong tendency to be plasticized by CO2 and suffer severely physical aging with an initial CO2 permeance of 300 GPU drifting to 76 GPU at the steady state. However, the 6FDA-2,6-DAT asymmetric composite hollow fibers still present impressive ultimate stabilized performance with a CO2/CH4 selectivity of 40 and a CO2 permeance of 59 GPU under mixed gas tests. These results manifest that 6FDA-2,6-DAT polyimide is one of promising membrane material candidates for CO2/CH4 separation application.  相似文献   

8.
Composite hollow fibers membranes were prepared by coating poly(phenylene oxide) (PPO) and polysulfone (PSf) hollow fibers with high molecular polyvinylamine (PVAm). Two procedures of coating hollow fibers outside and respective inside were investigated with respect to intrinsic PVAm solution properties and hollow fibers geometry and material.The influence of operating mode (sweep or vacuum) on the performances of membranes was investigated. Vacuum operating mode gave better results than using sweep because part of the sweep gas permeated into feed and induced an extra resistance to the most permeable gas the CO2. The composite PVAm/PSf HF membranes having a 0.7–1.5 μm PVAm selective layer, showed CO2/N2 selectivity between 100 and 230. The selectivity was attributed to the CO2 facilitated transport imposed by PVAm selective layer. The CO2 permeance changed from 0.006 to 0.022 m3(STP)/(m2 bar h) in direct correlation with CO2 permeance and separation mechanism of the individual porous supports used for membrane fabrication. The multilayer PVAm/PPO membrane using as support PPO hollow fibers with a 40 nm PPO dense skin layer, surprisingly presented an increase in selectivity with the increase in CO2 partial pressure. This trend was opposite to the facilitated transport characteristic behaviour of PVAm/porous PSf. This indicated that PVAm/PPO membrane represents a new membrane, with new properties and a hybrid mechanism, extremely stable at high pressure ratios. The CO2/N2 selectivity ranged between 20 and 500 and the CO2 permeance from 0.11 to 2.3 m3(STP)/(m2 bar h) depending on the operating conditions.For both PVAm/PSf and PVAm/PPO membranes, the CO2 permeance was similar with the CO2 permeance of uncoated hollow fiber supports, confirming that the CO2 diffusion rate limiting step resides in the properties of the relatively thick support, not at the level of 1.2 μm thin and water swollen PVAm selective layer. A dynamic transfer of the CO2 diffusion rate limiting step between PVAm top layer and PPO support was observed by changing the feed relative humidity (RH%). The CO2 diffusion rate was controlled by the PPO support when using humid feed. At low feed humidity the 1.2 μm PVAm top layer becomes the CO2 diffusion rate limiting step.  相似文献   

9.
Integrally skinned capillary tube membranes were prepared by the wet-phase inversion method. A series of polyetherimide (PEI, Ultem 1000) membranes were prepared with varying amounts of polyvinylpyrrolidone (PVP) in the casting solution. The surfaces of the membranes were analyzed by electron spectroscopy for chemical analysis (ESCA). It was found that the molecular structure of PEI, both with and without PVP, changes considerably during membrane preparation. The ESCA results indicated that the amount of PEI nitrogen remaining fully imidized at the surface varied in the range 63–86%. The PVP/PEI mass ratio at the membrane surface was found to increase linearly from 0 to 0.10 as the ratio was increased from 0 to 0.43 in the casting solution. The PVP/PEI mass ratio in the membrane bulk was determined by thermogravimetric analysis (TGA) to reach a maximum of 0.067. Vapor permeation experiments were done with a water/n-propanol mixture. The addition of PVP increased the membrane selectivity (α=PA/PB, A=water, B=1-propanol) from 76 to 810, while the permeance for water remained relatively constant at 1.3×10−6 mol/m2 s Pa.  相似文献   

10.
Three asymmetric hollow-fiber polymer membrane systems were studied for application in elevated temperature, low feed pressure systems: (1) a single component polyaramide, (2) a single component polyimide, and (3) a composite polyimide on a polyimide/polyetherimide blend support. Permeation driving force was increased for the 2.2 psig feed pressure by sweeping an inert gas along the downstream side of the membrane. Both cocurrent and countercurrent sweep flow patterns were examined with only minimal differences found. The polyaramide membrane was stable in the entire range of temperatures tested (23–220°C). After utilizing a silicone rubber post-treatment, the membrane exhibited a hydrogen permeance of approximately 300 GPU at 175°C with a hydrogen to n-butane selectivity of 700. The polyimide-containing membranes had superior room-temperature properties; however, the thin skins aged at elevated temperatures. This aging effect decreased the permeance of the membranes approximately 40% at 175°C and slightly increased the permselectivity; however, the effects of aging leveled out over 200–250 h at 175°C and the membrane properties became constant. At this level, the polyimide membranes exhibited approximately 400 GPU of hydrogen permeance with a 660 selectivity to n-butane.  相似文献   

11.
Cobalt(II) was chelated on the surface of a hydroxyl terminated polybutadiene (HTPB) based polyurethane (PU) membrane. The surface of a HTPB based PU membrane was first modified by ethylenediamine (EA) plasma. The cobalt chelated membrane was prepared by immersing the plasma treated membrane into a cobalt(II)/formamide solution for various length of time. For a fair comparison, the untreated and plasma treated membranes were also immersed in formamide solution. The gas transport properties of all three membranes were compared. Without solvent immersion, the O2/N2 selectivity increased from 2.6 to 3.1 after EA plasma treatment. But the permeability decreased from 0.88 GPU to 0.35 GPU. The selectivity was further improved to 4.4 by immersing the plasma treated membrane in a solution of CoCl2·6H2O/formamide for 1 h, but the permeability decreased to 0.23 GPU. The solvent immersion had little effect on the transport properties of the untreated membrane. But the transport properties of the plasma treated and cobalt chelated membranes were greatly affected by the formamide immersion. The oxygen and nitrogen permeabilities of the modified top layers could be calculated from a series model for composite membranes. It was found that both the permeability and selectivity of the top layer of the plasma treated membrane increased with the solvent immersing time. For the top layer of the cobalt chelated membrane, the gas permeability first decreased after 1 h immersion and then increased after further immersion in CoCl2·6H2O/formamide solution. The selectivity of cobalt chelated membrane increased as the gas permeability decreased and vice versa. These results implied that the EA grafting enhanced the O2/N2 selectivity by increasing its oxygen affinity but the cobalt chelating increased the O2/N2 selectivity by enhancing the size sieving effect.  相似文献   

12.
Composite hollow fiber membranes were prepared by a dry-jet wet spinning process using a double layer spinneret. These membranes were composed of a thin and dense outer-layer of poly(ethylene oxide)-containing polyimide and a sponge-like inner layer of other polyimide. The outer layer was responsible for the separation and fabricated as thin as 1 μm. The permeation flux of CO2, RCO2, and the CO2/N2 selectivity decreased 40% and 10–20%, respectively, in a month after the membrane preparation. The steady performance was still high; for example, RCO2=69×10−6cm3 (STP)/(cm2 s cm Hg) and the selectivity of 33 at 323 K.  相似文献   

13.
The Pd–Ag films, with a total thickness of <2.2 μm, were deposited by electroless plating on the inside of α-alumina membranes from SCT. The H2 permeances through separated Pd–Ag layers were poor and heating conditions were investigated to improve the H2 permeances through the metal films. The heating temperature, heating time and heating environment all had a significant effect on the H2 permeance and the H2 to N2 selectivity of the Pd–Ag films. The films were oxidised at 310°C for 1 h after heat treatment in Ar at 550°C, and then reduced in H2. This additional surface modification step more than doubled the H2 permeance through the film and only created a moderate amount of membrane defects as indicated by the increase in the N2 permeance. After the heating process, the membranes were characterised from 250 to 410°C using both a sweep gas and a positive pressure difference.  相似文献   

14.
The fabrication process is described of supported microporous Si3N4 membranes, prepared by pyrolytically decomposing organo-substituted polysilazane precursor. The membrane had a composite asymmetric structure consisting of a mechanically strong porous Si3N4 support which had 42 vol% pores between 0.4 and 0.52 μm, coated with an intermediate and one or two thin active top layers. The individual layers were fabricated by the conventional dip-coating technique.Permeation experiments with He, N2 and CO2 have been performed to determine the gas transport characteristics and separation performance of the processed membranes. The permeation is pressure-independent, indicating no viscous flow in the supported top layer. The proposed process has made it possible to prepare membranes with He permeation rates of ≥5.3×10−6 mol m−2 s−1 Pa−1 and He/N2 permselectivities of ≥2.0, even in the membrane with one top layer. It is also demonstrated from separation experiments, that the membrane with high quality top layer has the separation factors of 4.7 for He/N2 and of the theoretical of Knudsen flow for CO2/N2.  相似文献   

15.
The effects of the preparation conditions in a dip coating process on polyimide composite membranes have been investigated. Polyimide precursor obtained from pyromellitic dianhidride (PMDA) and 4,4′-oxydianiline (ODA) was mixed with triethylamine and poly(amic acid)tri-ethylamine salt (PAA salt) was made. An asymmetric polyimide membrane (PI-2080) as a supporting membrane was dipped in a PAA salt (concentration 0–5 wt.%) methanol solution. The coating layers of PAA salt were converted to these of polyimide by annealing at 200°C for 3 h in an ordinary vacuum oven.The performance of the polyimide composite membrane was evaluated by gas permeation (N2, O2, CO2, at 1 kg/cm2) and pervaporation (feed: a 95 vol.% ethanol aqueous solution at 30–60°C). The composite membranes prepared using a coating solution of 5 wt.% PAA salt showed the CO2/N2 selectivity of over 25 on gas permeation, and separation factor α (H2O/EtOH) of over 800 with a total flux of 0.21 kg/m2 h on pervaporation.  相似文献   

16.
Glycerol-based liquid membranes immobilized in the pores of hydrophilic microporous hollow fibers have been studied for selective separation of CO2 from a mixed gas (CO2, N2) feed having low concentrations of CO2 characteristic of gases encountered in space walk and space cabin atmosphere. The immobilized liquid membranes (ILMs) investigated consist of sodium carbonate–glycerol or glycine-Na–glycerol solution. Based on the performances of such liquid membranes in flat hydrophilic porous substrates [Chen et al., Ind. Eng. Chem. Res. 38 (1999) 3489; Chen et al., Ind. Eng. Chem. Res. 39 (2000) 2447], hollow fiber-based ILMs were studied at selected CO2 partial pressure differentials (ΔpCO2 range 0.36–0.50 cmHg), relative humidities (RH range 45–100%), as well as carrier concentrations. The sodium carbonate concentration was primarily 1.0 mol/dm3; the glycine-Na concentration was 3.0 mol/dm3. The sweep gas was always dry helium and it flowed on the shell side. Very high CO2/N2 selectivities were observed with porous polysulfone microfiltration membranes as substrate. As in the case of flat film-based ILMs (see references above), feed side RH is an important factor determining the ILM performances. Generally, lower permeances and greater CO2/N2 selectivity values were observed at lower feed stream RHs. When the feed side average RH=60%, pCO2,f=0.005 atm and glycine-Na concentration was 3.0 M, the CO2/N2 separation factor observed was over 5000. Prolonged runs lasting for 300 h showed that the hollow fiber-based ILM permeation performances were stable.  相似文献   

17.
A new technique to prepare a palladium membrane for high-temperature hydrogen permeation was developed: Pd(C3H3)(C5H5) an organometallic precursor reacted with hydrogen at room temperature to decompose into Pd crystallites. This reaction together with sintering treatment under hydrogen and nitrogen in sequence resulted in the formation of dense films of pure palladium on the surface of the mesoporous stainless steel (SUS) support. Under H2 atmosphere the palladium membrane could be sintered at 823 K to form a skin layer inside the support pores. The hydrogen permeance was 5.16×10−2 cm3 cm−2 cm Hg−1 s−1 at 723 K. H2/N2 selectivity was 1600 at 723 K.  相似文献   

18.
A membrane having an amine moiety was prepared by plasma-grafting 2-(N,N-dimethyl)aminoethyl methacrylate (DAMA) onto a microporous polyethylene substrate. Permselectivity of the membrane for CO2 over N2 was achieved in both dry and water swollen conditions. When the CO2 partial pressure in the feed gas was 0.047 atm, the selectivity of CO2 over N2 reached 130 for the highly swollen water containing membrane. This value was found to agree with that obtained with a mobile carrier membrane (supported liquid membrane) using DAMA as the carrier. The effects of several experimental conditions such as degree of grafting, feed partial pressure and temperature on the membrane performance were studied. It was suggested that the membrane acted as a fixed carrier membrane for CO2 facilitated transport in under the dry condition and acted as a fixed reaction site membrane in the water swollen condition. The carrier transport mechanism is discussed for dry and aqueous membranes.  相似文献   

19.
A water-swollen type of poly(vinyl alcohol) (PVA)/poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA) cation-exchange membrane was prepared and characterized in terms of its electrochemical properties including ion-exchange capacity (IEC), electrical resistance, and transport number, etc. PVA/PSSA-MA membranes exhibited low electrical resistance and highly swelling property. In spite of 2–4 times higher water swelling ratio (WSR) than that of CMX (Tokuyama Corp., Japan), the transport number of the prepared membrane was comparable to that of the commercial membrane (tn>0.93). Moreover, the electric resistance of PVA/PSSA-MA membrane was measured as low as 1.0–1.5 Ω cm2. Further, in this study, interrelation between the membrane characteristics and crosslinking was investigated, and the result exhibited that the crosslinking degree is one of major factors affecting the ion transport through a water-swollen ion-exchange membrane (IEM).  相似文献   

20.
Poly(vinylalcohol)/poly(ethyleneglycol)/poly(ethyleneimine) blend membranes were prepared by solution casting followed by solvent evaporation. The chemical structure of the prepared membranes was analyzed by FTIR and DSC. The sorption behavior as well as the permeabilities of the membranes for pure CO2 and N2 were investigated. The results show that the PVA/PEI/PEG membranes possess a higher permeability of CO2 and a lower permeability of N2. The membrane displays a CO2 permeability of 27 Barrer, and a N2 permeability of 3 Barrer at 25°C and 1 bar. CO2 sorption behavior of the composite membrane, which can be classified as a dual-mode sorption model, and N2 sorption behavior of the copolymeric membrane is in agreement with the Fickian diffusion model.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号