首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
This paper develops a model for designing a backbone network. It assumes the location of the backbone nodes, the traffic between the backbone nodes and the link capacities are given. It determines the links to be included in the design and the routes used by the origin destination pairs. The objective is to obtain the least cost design where the system costs consist of connection costs and queueing costs. The connection costs depend on link capacity and queueing costs are incurred by users due to the limited capacity of links. The Lagrangian relaxation embedded in a subgradient optimization procedure is used to obtain lower bounds on the optimal solution of the problem. A heuristic based on the Lagrangian relaxation is developed to generate feasible solutions.  相似文献   

2.
This paper addresses the problem of selecting primary and secondary routes for every pair of communicating nodes in a backbone communication network. A primary route and a secondary route constitute a route pair. A route pair is selected from among all possible route pairs in the network. The secondary route is link-disjoint from the primary route. A nonlinear integer mathematical programming model to minimize the mean delay faced by messages is developed. The model captures situations where a single link failure would divert traffic to the appropriate secondary routes. A solution procedure based on a relaxation of the problem is presented. Computational results indicate that the procedure is very effective.  相似文献   

3.
When a new road is being planned it is necessary to assess how much traffic will be diverted to it from various parts of the existing road network. This allocation of traffic has usually been based on a comparison of journey times or journey costs on alternative routes, and has depended on the selection, by trial and error, of the cheapest route through the network.A method is described which determines the shortest or cheapest routes between points on the network and which can readily be extended to show how traffic between the points is distributed and to assess the total cost of vehicle operation on the network.The procedure is quite systematic and independent of the manner in which journey costs are derived, and it could be carried out on an electronic computer with considerable saving in time. It can be applied to any transportation or communication problem that involves finding the most economical routes through a network.  相似文献   

4.
提出一个时变双层交通分配模型,其中上层网络管理者设立了一个路段的最大排队长度,其目标是使由网络流和排队长度定义的总出行时间最小.目标函数在离散时段内以路段流量和排队长度作为决策变量,同时考虑不同类型的信号交叉口延误的影响.下层网络用户的反应依赖于上层管理者的决策,其选择是使自身感知阻抗最小的路径,服从一个基于成对组合Logit的路径选择模型,构成一个成对组合Logit的均衡分配问题.结合了交通分配和流传播方法,将其表示为一个均衡约束下的双层数学规划问题,形成了一个Stackelberg非合作博弈.使用遗传算法求解该双层规划问题,并采用实证分析来表现模型的特征和算法的计算表现.结果表明路径重叠、路段流量、路段排队长度等因素对网络均衡流分布均有显著影响.  相似文献   

5.
When contingencies occur in the telephone network the proper traffic control actions for rearranging the traffic flow must be promptly taken in a short period of time, otherwise, the congestion will soon spread to other parts of the network. In this paper, a multicommodity maximal flow model is proposed to formulate the problem, and an efficient approach is proposed to find the solution within a short time period. The node pairs are first sorted by the traffic demand into decreasing order and the capacity of links is allocated to the node pair with largest demand. The traffic allocation is then iteratively reallocated on those routes which share the same links to find a better solution, until that solution is obtained. The advantages of this approach are: (1) a feasible solution can be obtained within a short time period; (2) the affected traffic can be rerouted on paths with more than two links; (3) an acceptable solution can be found once the period has expired.  相似文献   

6.
This paper studies the hop constrained network design problem with partial survivability, namely, given an undirected network, a set of point-to-point demands (commodities), and transmission link costs, identify two node disjoint paths for each demand (commodity) to minimize the total costs subject to the constraints that each demand is routed and traverses at most a specified number of links (or hops) on both the paths.A mathematical programming formulation of the problem is presented and an efficient solution procedure based on the linear programming relaxation is developed. Extensive computational results across a number of networks are reported. These results indicate that the solution procedure is effective for a wide range of problem sizes.  相似文献   

7.
We study a vehicle routing problem with soft time windows and stochastic travel times. In this problem, we consider stochastic travel times to obtain routes which are both efficient and reliable. In our problem setting, soft time windows allow early and late servicing at customers by incurring some penalty costs. The objective is to minimize the sum of transportation costs and service costs. Transportation costs result from three elements which are the total distance traveled, the number of vehicles used and the total expected overtime of the drivers. Service costs are incurred for early and late arrivals; these correspond to time-window violations at the customers. We apply a column generation procedure to solve this problem. The master problem can be modeled as a classical set partitioning problem. The pricing subproblem, for each vehicle, corresponds to an elementary shortest path problem with resource constraints. To generate an integer solution, we embed our column generation procedure within a branch-and-price method. Computational results obtained by experimenting with well-known problem instances are reported.  相似文献   

8.
This study investigates the system-wide traffic flow re-allocation effect of speed limits in uncertain environments. Previous studies have only considered link capacity degradation, which is only one of the factors that lead to supply uncertainty. This study examines how imposing speed limits reallocates the traffic flows in a situation of general supply uncertainty with risk-averse travelers. The effects of imposing a link-specific speed limit on link driving speed and travel time are analyzed, given the link travel time distribution before imposing the speed limit. The expected travel time and travel time standard deviation of a link with a speed limit are derived from the link travel time distribution and are both continuous, monotone, and convex functions in terms of link flow. A distribution-free, reliability-based user equilibrium with speed limits is established, in which travelers are assumed to choose routes that minimize their own travel time budget. A variational inequality formulation for the equilibrium problem is proposed and the solution properties are provided. In this study, the inefficiency of a reliability-based user equilibrium flow pattern with speed limits is defined and found to be bounded above when supply uncertainty refers to capacity degradation. The upper bound depends on the level of risk aversion of travelers, a ratio related to the design and worst-case link capacities, and the highest power of all link performance functions.  相似文献   

9.
Less-Than-Truckload (LTL) carriers are required on a daily basis to solve Intra-Group Line-Haul (IGLH) problems. IGLH problems require the determination of routes to service required pickups and deliveries (i.e., 28-foot trailers) at End-Of-Line (EOL) terminals. The objective is to minimize total costs, given that tractors are able to simultaneously transport two trailers and that all pickups and deliveries must be accomplished. In this paper, an approximate IGLH solution approach is presented. Given pickup and delivery requirements together with relevant distance data, a matching network is constructed in which nodes correspond to sets of pickups and deliveries and links to routes. A minimum weight non-bipartite matching algorithm is solved over this network and the result is an IGLH solution. This solution is improved by again applying a minimum weight matching algorithm, this time to a matching network in which nodes correspond to routes and links to improved routes. Finally, the routes are sequenced so as to achieve balance at each EOL terminal (i.e., empty trailers must be delivered or picked up as necessary to ensure that each EOL terminal has the same number of pickups and deliveries) and to minimize the inventory of empty trailers. The new IGLH solution procedure is tested on randomly generated data and on data provided by a large LTL carrier. Computational tests show that near-optimal solutions are generated rapidly.  相似文献   

10.
The problem of determining the equilibrium distribution of the traffic flow in a city network is studied when the traffic demands on a set of given routes are known. The problem is formulated in terms of a nonlinear variational inequality over a polyhedron and a solving procedure, different from those shown in [1], [3], [4], is exhibited. This procedure is based on a very simple, necessary, and sufficient condition for a solution of the variational inequality to lie on a face of the polyhedron. Moreover, it is also compared, by means of numerical examples, with the procedures formulated in [1], [3], and [4] (see expressions (1.2) and (3.5) for a significant valuation).  相似文献   

11.
The arc routing problem involves the total distance covered in traversing a certain number of arcs in a network. In the capacitated version of this problem of a finite capacity is associated with each vehicle. In this paper we introduce a new approximate solution strategy for the capacitated arc routing problem (CARP). This strategy usesd an insertion procedure to generate many routes in parallel. The purpose is to obtain a better balance between the costs of each route. Computational results are reported.  相似文献   

12.
In an asynchronous transfer mode (ATM) network, given the network topology and traffic demands, the establishment of the system of virtual paths (VPs), and the assignment of connections to them so that the network performance is optimized, entails a number of computationally hard subproblems. The optimization problem discussed here focuses on finding a system of VP routes for a given set of VP terminators and VP capacity demands. Although it has been proven that the existing random path algorithm yields the worst case time bound, the solution performance still depends highly on the number of iterations. In this paper, an exact solution procedure and a heuristic method based on a simple tabu search have been developed for optimizing the system of VPs. Computational results show that the proposed tabu search algorithm is effective in obtaining high quality solutions, and the performance of the proposed algorithm is increasingly attractive as the problem size becomes larger.  相似文献   

13.
Modern broadband telecommunications networks transport diverse classes of traffic through flexible end-to-end communications paths. For instance, Internet Protocol (IP) networks with Multi-Protocol Label Switching (MPLS) carry traffic through label switched paths. These flexible paths are often changed in real, or near-real, time in response to congestion and failures detected in the network. As a result, over time, some of these communications paths become excessively long (referred to as out-of-kilter), leading to poor service performance and waste of network resources. An effective reassignment scheme may require reassignment of communications paths with acceptable length (referred to as in-kilter) in order to generate spare capacity on certain links for the out-of-kilter paths. A graceful reassignment solution provides an ordered sequence of reassignments that satisfies the following: (i) the total number of reassigned communications paths does not exceed a specified limit, (ii) no temporary capacity violations are incurred on any network link during the execution of the sequence of reassignments (reassignments are executed sequentially, one at a time), (iii) a communications path is reassigned only as a unit without being split among multiple alternate routes (iv) all reassigned communications paths will be in-kilter, (v) none of the reassignments of communications paths that were originally in-kilter can be excluded from the specified solution without resulting in some capacity violation, and (vi) the sequence of reassignments approximately optimizes a predefined objective, such as maximizing the number of reassigned out-of-kilter communications paths or maximizing the total load reassigned from out-of-kilter communications paths. The resulting problem is formulated as a multi-period, multi-commodity network flow problem with integer variables. We present a search heuristic that takes advantage of certain problem properties to find subsequences of reassignments that become part of the solution, without performing an exhaustive search. Each subsequence reassigns at least one out-of-kilter communication path.  相似文献   

14.
This work is focused on the analysis of the survivable capacitated network design problem. This problem can be stated as follows: Given a supply network with point-to-point traffic demands, specific survivability requirements, a set of available capacity ranges and their corresponding discrete costs for each arc, find minimum cost capacity expansions such that these demands can be met even if a network component fails. Solving this problem consists of selecting the links and their capacity, as well as the routings for each demand in every failure situation. This type of problem can be shown to be NP-hard. A new linear mixed-integer mathematical programming formulation is presented. An effective solution procedure based on Lagrangean relaxation is developed. Comparison heuristics and improvement heuristics are also described. Computational results using these procedures on different sizes of randomly generated networks are reported.  相似文献   

15.
This paper proposes an alternate formulation of the traffic assignment problem using route flows and the shortest Origin-Destination (OD) travel times as the decision variables. This is accomplished through defining a gap function to convert the Nonlinear Complementarity Problem (NCP) formulation to an equivalent Mathematical Program (MP). This formulation has two advantages:
  • 1.(i) it can model assignment problems with general route costs which cannot be accomplished with existing formulations that use link-flow variables
  • 2.(ii) the objective function is smooth, convex, and bounded, which permits efficient MP algorithms for its solution.
Two solution approaches are developed to solve the proposed formulation. The first is based on a set of working routes, which are modeled as “known a priori” based on travelers' preferences or interviews. The second approach uses a column generation procedure to generate a new route in each iteration on a need basis. For each approach, we use a Successive Quadratic Programming (SQP) algorithm to solve for the solutions.To show that the formulation is correct, we solve a small example with a general route cost and compare it to the classic traffic equilibrium problem which assumes an additive route cost function. Finally, numerical results for a medium-sized network are provided to demonstrate the feasibility of the solution approach.  相似文献   

16.
The problem of designing high speed networks using different modules of link capacities, in the same model, in order to meet uncertain demands obtained from different probability distribution functions (PDF) is a very hard and challenging real network design problem. The novelty of the new model, compared to previous ones, is to allow installing more than one module per link having equal or different capacities. Moreover, the scenarios of traffic can be generated, according to practical observations, from the main classes of uncertain demands (multi-service) simulated from different PDFs, including heavy tailed ones. These classes of traffic are considered simultaneously for the scenario generation, different from related works in the literature that use only one probability distribution function to simulate the scenarios of traffic. In this work we present the problem formulation and report computational results using branch-and-bound and L-shaped decomposition solution approaches. We consider in the same model up to three different types of modular capacities (multi-facility), since it seems that using more than this can lead to an intractable model. The objective is to minimize penalty (in case of unmet demands) and investment costs. We obtain confidence intervals (with 95% of covering rate) on the expected optimal solution value for the resulting two-stage stochastic integer-modular problem and discuss when they are meaningful. Numerical experiments show that our model can handle up to medium real size instances.  相似文献   

17.
This paper discusses a design of a hybrid ring–mesh network in a survivable communication network. Given a set of traffic demands, the problem is to assign each traffic demand to rings and mesh such that the cost of add–drop multiplexer (ADM) and digital cross-connect system (DCS) equipment required is minimized. This assignment problem can be considered together with the fibre routing of nodes on rings and mesh. As a solution procedure, a tabu search is developed with recency-based short-term and frequency-based long-term memory structures. In computational experiments, the proposed tabu search is compared with the solutions obtained by the branch and bound procedure of CPLEX. We see that the tabu search provides a nearly optimal solution within sufficiently short time periods for all test problems with a gap of approximately 1–4% from the lower bound.  相似文献   

18.
There have been several attempts to solve the capacitated arc routing problem with m vehicles starting their tours from a central node. The objective has been to minimize the total distance travelled. In the problem treated here we also have the fixed costs of the vehicles included in the objective function. A set of vehicle capacities with their respective costs are used. Thus the objective function becomes a combination of fixed and variable costs. The solution procedure consists of four phases. In the first phase, a Chinese or rural postman problem is solved depending on whether all or some of the arcs in the network demand service with the objective of minimizing the total distance travelled. It results in a tour called the giant tour. In the second phase, the giant tour is partitioned into single vehicle subtours feasible with respect to the constraints. A new network is constructed with the node set corresponding to the arcs of the giant tour and with the arc set consisting of the subtours of the giant tour. The arc costs include both the fixed and variable costs of the subtours. The third phase consists of solving the shortest path problem on this new network to result in the least cost set of subtours represented on the new network. In the last phase a postprocessor is applied to the solution to improve it. The procedure is repeated for different giant tours to improve the final solution. The problem is extended to the case where there can be upper bounds on the number of vehicles with given capacities using a branch and bound method. Extension to directed networks is given. Some computational results are reported.  相似文献   

19.
Telecommunication networks are subject to link and equipment failures. Since failures cannot be entirely avoided, networks have to be designed so as to survive failure situations. In this paper, we are interested in designing low cost survivable networks. Given point-to-point traffic demands and a cost/capacity function for each link, we aim at finding the minimum cost capacities satisfying the given demands and survivability requirements. A survivability model that reroutes interrupted traffic using all the available capacities on the network is presented and studied. In the proposed model, capacity and flow assignments for each network operating state are jointly optimized. We prove the -hardness of the optimisation problem defined by dual constraints. Then, we propose a polynomial relaxation along with a fast heuristic to compute a feasible solution of the problem from its relaxed optimal solution. Our solution approaches are tested on a set of problem instances.Received: September 2002, Revised: July 2003, AMS classification: 90C05  相似文献   

20.
Sensors are used to monitor traffic in networks. For example, in transportation networks, they may be used to measure traffic volumes on given arcs and paths of the network. This paper refers to an active sensor when it reads identifications of vehicles, including their routes in the network, that the vehicles actively provide when they use the network. On the other hand, the conventional inductance loop detectors are passive sensors that mostly count vehicles at points in a network to obtain traffic volumes (e.g., vehicles per hour) on a lane or road of the network.This paper introduces a new set of network location problems that determine where to locate active sensors in order to monitor or manage particular classes of identified traffic streams. In particular, it focuses on the development of two generic locational decision models for active sensors, which seek to answer these questions: (1) “How many and where should such sensors be located to obtain sufficient information on flow volumes on specified paths?”, and (2) “Given that the traffic management planners have already located count detectors on some network arcs, how many and where should active sensors be located to get the maximum information on flow volumes on specified paths?”The problem is formulated and analyzed for three different scenarios depending on whether there are already count detectors on arcs and if so, whether all the arcs or a fraction of them have them. Location of an active sensor results in a set of linear equations in path flow variables, whose solution provide the path flows. The general problem, which is related to the set-covering problem, is shown to be NP-Hard, but special cases are devised, where an arc may carry only two routes, that are shown to be polynomially solvable. New graph theoretic models and theorems are obtained for the latter cases, including the introduction of the generalized edge-covering by nodes problem on the path intersection graph for these special cases. An exact algorithm for the special cases and an approximate one for the general case are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号