首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The block glycopolymer, poly(2‐(α‐d ‐mannopyranosyloxy)ethyl methacrylate)‐b‐poly(l ‐lactide) (PManEMA‐b‐PLLA), was synthesized via a coupling approach. PLLA having an ethynyl group was successfully synthesized via ring‐opening polymerization using 2‐propyn‐1‐ol as an initiator. The ethynyl functionality of the resulting polymer was confirmed by MALDI‐TOF mass spectroscopy. In contrast, PManEMA having an azide group was prepared via AGET ATRP using 2‐azidopropyl 2‐bromo‐2‐methylpropanoate as an initiator. The azide functionality of the resulting polymer was confirmed by IR spectroscopy. The Cu(I)‐catalyzed 1,3‐dipolar cycloaddition between PLLA and PManEMA was performed to afford PManEMA‐b‐PLLA. The block structure was confirmed by 1H NMR spectroscopy and size exclusion chromatography. The aggregating properties of the block glycopolymer, PManEMA16kb‐PLLA6.4k (M n,PManEMA = 16,000, M n,PLLA = 6400) was examined by 1H NMR spectroscopy, fluorometry using pyrene, and dynamic light scattering. The block glycopolymer formed complicated aggregates at concentrations above 21 mg·L?1 in water. The d ‐mannose presenting property of the aggregates was also characterized by turbidimetric assay using concanavalin A. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 395–403  相似文献   

2.
Novel poly(l ‐lactide) (PLLA)/poly(d ‐lactide) (PDLA)/poly(tetrahydrofuran) (PTHF) multiblock copolymers with designed molecular structure were synthesized by a two‐stage procedure. Well‐defined PDLA‐PLLA‐PTHF‐PLLA‐PDLA pentablock copolymers were prepared by sequential ring opening polymerization of l ‐ and d ‐lactides starting from PTHF glycol, with the length of the (equimolar) PLLA and PDLA blocks being varied. Then, these dihydroxyl‐terminated pentamers were transformed into multiblock copolymers by melt chain‐extension with hexamethylene diisocyanate–being the first time that the coupling of pentablock units is reported. The successful formation of macromolecular chains with a multiblock and well‐defined architecture was demonstrated by 1H NMR spectroscopy. The thermal properties and structuring of the resulting materials were investigated by means of DSC and WAXD measurements and DMA analysis. Stereocomplexation was found to be promoted during solution and melt crystallization. This approach affords materials combining the high rigidity and strength (other than improved thermal resistance) of the hard stereocomplex crystallites with the flexibility imparted by the soft block, whereby their properties can be finely tailored through the composition of the basic pentablock units without limitations on the final molecular weight. The adopted reaction conditions make this process highly appealing in view of the possibility to perform it in extruder. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3269–3282  相似文献   

3.
The step‐wise solution self‐assembly of double crystalline organometallic poly(ferrocenyldimethylsilane)‐block‐poly(2‐iso‐propyl‐2‐oxazoline) (PFDMS‐b‐PiPrOx) diblock copolymers is demonstrated. Two block copolymers are obtained by copper‐catalyzed azide‐alkyne cycloaddition (CuAAC), featuring PFDMS/PiPrOx weight fractions of 46/54 (PFDMS30b‐PiPrOx75) and 30/70 (PFDMS30b‐PiPrOx155). Nonsolvent induced crystallization of PFDMS in acetone leads in both cases to cylindrical micelles with a PFDMS core. Afterward, the structures are transferred into water for sequential temperature‐induced crystallization of the PiPrOx corona, leading to hierarchical double crystalline superstructures, which are investigated using scanning electron microscopy, wide angle X‐ray scattering, and differential scanning calorimetry.

  相似文献   


4.
Block copolymers were synthesized by ring‐opening polymerization of L ‐lactide or D ‐lactide in the presence of mono‐ or dihydroxyl poly(ethylene glycol), using zinc metal as catalyst. The resulting copolymers were characterized by various techniques, namely 1H NMR spectroscopy, differential scanning calorimetry (DSC), X‐ray diffractometry, and Raman spectrometry. The composition of the copolymers was designed such that they were water soluble. Bioresorbable hydrogels were prepared from aqueous solutions containing both poly(L ‐lactide)/poly(ethylene glycol) and poly(D ‐lactide)/poly(ethylene glycol) block copolymers. Rheological studies confirmed the formation of hydrogels resulting from stereocomplexation between poly(L ‐lactide) and poly(D ‐lactide) blocks.

Ring‐opening polymerization of L (D )‐lactide in the presence of dihydroxyl PEG using zinc powder as catalyst.  相似文献   


5.
Novel amphiphilic polypeptoid‐polyester diblock copolymers based on poly(sarcosine) (PSar) and poly(ε‐caprolactone) (PCL) are synthesized by a one‐pot glovebox‐free approach. In this method, sarcosine N‐carboxy anhydride (Sar‐NCA) is firstly polymerized in the presence of benzylamine under N2 flow, then the resulting poly(sarcosine) is used in situ as the macro­initiator for the ring‐opening polymerization (ROP) of ε‐caprolactone using tin(II) octanoate as a catalyst. The degree of poly­merization of each block is controlled by various feed ratios of monomer/initiator. The diblock copolymers with controlled molecular weight and narrow molecular weight distributions (ĐM < 1.2) are characterized by 1H NMR, 13C NMR, and size‐exclusion chromatography. The self‐assembly behavior of PSar‐b‐PCL in water is investigated by dynamic light scattering (DLS) and transmission electron microscopy. DLS results reveal that the diblock copolymers associate into nanoparticles with average hydrodynamic diameters (DH) around 100 nm in water, which may be used as drug delivery carriers.

  相似文献   


6.
Cationic ring‐opening copolymerization behavior of 1,5,7,11‐tetraoxaspiro[5.5]undecane (SOC1) and ε‐caprolactone (CL), and the thermal behavior of the obtained copolymers are described. When SOC1 and CL were cationically copolymerized under various feed ratios using BF3OEt2 as the initiator in CH2Cl2 at 25 °C, the corresponding copolymers were obtained in 77–99% yields. The 1H NMR spectroscopic analysis of the copolymers revealed that the copolymer compositions were almost identical to the feed ratios, and the diad ratios of SOC1–SOC1/SOC1–CL and CL–SOC1/CL–CL are 48.0/52.0 and 54.3/45.7. These observations proved the random structures of the copolymers without containing the long blocks of the homopolymer sequences. Differential scanning calorimetric (DSC) analysis revealed that the melting points and melting entharpies decreased with the increase of the SOC1 unit compositions, suggesting that the copolymers gain flexibility as the SOC1 unit increases. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2937–2942, 2006  相似文献   

7.
Ethylene glycol (EG) initiated, hydroxyl‐telechelic poly(L ‐lactide) (PLLA) was employed as a macroinitiator in the presence of a stannous octoate catalyst in the ring‐opening polymerization of 5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one (MBC) with the goal of creating A–B–A‐type block copolymers having polycarbonate outer blocks and a polyester center block. Because of transesterification reactions involving the PLLA block, multiblock copolymers of the A–(B–A)n–B–A type were actually obtained, where A is poly(5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one), B is PLLA, and n is greater than 0. 1H and 13C NMR spectroscopy of the product copolymers yielded evidence of the multiblock structure and provided the lactide sequence length. For a PLLA macroinitiator with a number‐average molecular weight of 2500 g/mol, the product block copolymer had an n value of 0.8 and an average lactide sequence length (consecutive C6H8O4 units uninterrupted by either an EG or MBC unit) of 6.1. For a PLLA macroinitiator with a number‐average molecular weight of 14,400 g/mol, n was 18, and the average lactide sequence length was 5.0. Additional evidence of the block copolymer architecture was revealed through the retention of PLLA crystallinity as measured by differential scanning calorimetry and wide‐angle X‐ray diffraction. Multiblock copolymers with PLLA crystallinity could be achieved only with isolated PLLA macroinitiators; sequential addition of MBC to high‐conversion L ‐lactide polymerizations resulted in excessive randomization, presumably because of residual L ‐lactide monomer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6817–6835, 2006  相似文献   

8.
A series of multibranched pentablock copolymer (mBr5BlC), poly(L ‐lactide)‐b‐HBP‐b‐poly(ethylene glycol)‐b‐HBP‐b‐poly(L ‐lactide) (HBP = hyperbranched polyglycidol), has been synthesized by ring‐opening multibranching polymerization of glycidol using bifunctional poly(ethylene glycol) [PEG; molecular weight (MW) = 1000] as an initiator, followed by ring‐opening polymerization (ROP) of L ‐lactide in the presence of stannous octoate. The ROP of different amounts of L ‐lactide on HBP‐b‐PEG‐b‐HBP [MW = 2550; polydispersity index (PDI) = 1.08] yielded a series of the targeted mBr5BlCs of the MW range of 4360–15,300 with narrow PDI. All the mBr5BlCs have been well demonstrated to be in possession of good biocompatibility as biomaterials for various applications in biological medicine areas. The mBr5BlCs with tunable MW exhibited promising controllability in self‐assembly into spherical micellar structures with an average diameter range of 59–140 nm, which have no acute and intrinsic cytotoxicity against normal cells and provide a convenient strategy for drug loading. The anticancer drug doxorubicin was demonstrated to have a good affinity with the copolymer system, and its controlled release was performed in various pHs. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
Poly(thioester)s     

Syntheses and properties of aliphatic and aromatic polythioesters (PTEs) were reviewed including polythiocarbonates and polythiourethanes. The content is subdivided into the following sections: PTEs of aliphatic α‐mercapto carboxylic acid, PTEs of ω‐mercapto carboxylic acids, PTEs derived from α,ω‐dimercapto alkanes, aromatic poly(thioester)s, aliphatic poly(thiocarbonate)s, aliphatic poly(thiourethane)s and aromatic polythiocarbonates. The synthetic strategies reviewed in this article include anionic and cationic ring‐opening polymerizations, polycondensations in bulk, polycondensations in solutions, interfacial polycondensations and in vitro enzymatic polycondensations.  相似文献   

10.
11.
Amphiphilic, star‐shaped copolymers were synthesized by the ring‐opening polymerization of trimethylene carbonate initiated with a trifunctional, poly(ethylene glycol)‐based surfactant (polyoxyethylene sorbitan monolaurate) in the absence of any catalysts. The metal‐ and solvent‐free polymerization proceeded at 150 °C and afforded polyoxyethylene sorbitan monolaurate‐block‐poly(trimethylene carbonate) with number‐average molecular weights of 4500–11,900 in excellent yields. The copolymers successfully dispersed in a water/ethyl acetate (10/1 v/v) mixture, and the uniform suspension could contain a hydrophobic pigment and pyrene. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6633–6639, 2006  相似文献   

12.
A diacid (TOBA) containing an ester group was synthesized by reaction of terephthaloyl chloride with 4-hydroxybenzoic acid. Reaction of the obtained diacid with thionyl chloride resulted in preparation of the related diacid chloride (TOBC). Nucleophilic substitution reaction of 4-aminophenol and also 5-amino-l-naphthol with the prepared diacid chloride afforded two aromatic diols containing ester and amide groups, respectively. Aromatic and semi-aromatic poly(ester-amide-urethane)s were prepared via addition polymerization of different diisocyanates with novel diols. The prepared polyurethanes showed improved thermal stability.  相似文献   

13.
We report a series of biocompatible and biodegradable block copolymers of poly(ε‐caprolactone) with “clickable” polyphosphoester (PPE). The block copolymers are synthesized through controlled ring‐opening polymerization of five‐membered cyclic phosphoester monomer, propargyl ethylene phosphate (PAEP), initiated with poly(ε‐caprolactone) macroinitiator. The polymerization followed first‐order kinetics with living polymerization characteristics, thus the molecular weight and composition of copolymers are tunable by adjusting the feed ratio of PAEP monomer to macroinitiator. Azide‐functionalized poly(ethylene glycol) has been grafted to the copolymer to demonstrate the reactive feasibility by Cu(I)‐catalyzed “click” chemistry of azides and alkynes, generating “brush‐coil” polymers. The mild conditions associated with the click reaction are shown to be compatible with poly(ε‐caprolactone) and PPE backbones, rendering the click reaction a generally useful method for grafting numerous types of functionality onto the block copolymers. The block copolymers also show good biocompatibility to cells, suggesting their suitability for a range of biomaterial applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Three different, new germanium initiators were used for ring‐opening polymerization of L ‐lactide. Chlorobenzene and 120 °C was a usable polymerization system for solution polymerization, and the results from the polymerizations depended on the initiator structure and bulkiness around the insertion site. The average molecular weights as measured by size exclusion chromatography increased linearly with the monomer conversion, and the molecular weight dispersity was around 1.2 for initiators 1 and 2 , whereas it was around 1.4 for initiator 3 . The average molecular weight of poly(L ‐lactide) could be controlled with all three initiators by adding different ratios of monomer and initiator. The reaction rate for the solution polymerization was, however, overall extremely slow. With an initial monomer concentration of 1 M and a monomer‐to‐initiator ratio of 50, the conversion was 93% after 161 h for the fastest initiator. In bulk polymerization, 160 °C, the conversion was 90% after 10 h. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3074–3082, 2003  相似文献   

15.
Stereo multiblock PLAs with different block lengths are synthesized by melt polycondensation of low‐molecular‐weight poly(L ‐lactic acid)/poly(D ‐lactic acid) blends with a wide variety of $\overline {M} _{{\rm w}} $ in the range of 1.1–5.2 × 103 g · mol–1. The average block length (νav) of the stereo multiblock PLAs increases with increasing $\overline {M} _{{\rm w}} $ of the blend and with the reaction temperature, whereas $\overline {M} _{{\rm w}} $ and PDI of the stereo multiblock PLAs increases with increasing $\overline {M} _{{\rm w}} $ of the blend, the reaction time, and the temperature. Stereo multiblock PLAs with νav > 7 are crystallizable to form stereocomplex crystallites, and the crystallinity and melting temperature of the stereo multiblock PLAs increases with increasing νav and $\overline {M} _{{\rm w}} $ of the stereo multiblock PLAs.

  相似文献   


16.
Incorporating peptide blocks into block copolymers opens up new realms of bioactive or smart materials. Because there are such a variety of peptides, polymers, and hybrid architectures that can be imagined, there are many different routes available for the synthesis of these chimera molecules. This review summarizes the contemporary strategies in combining synthesis techniques to create well‐defined peptide‐polymer hybrids that retain the vital aspects of each disparate block. Living polymerization can be united with the molecular‐level control afforded by peptide blocks to yield block copolymers that not only have precisely defined primary structures, but that also interact with other (bio)molecules in a well defined manner.

  相似文献   


17.
In this communication, a mild, efficient, and generalized polycondensation route is developed for poly(disulfide)s from commercially available monomers 2,2′‐dithiodipyridine and 1,6‐hexanedithiol. Using the stoichiometric imbalance between the two monomers, it is possible to produce telechelic poly(disulfide)s of predictable molecular weight with reactive pyridyl disulfide groups at both the terminals of the chain. The two terminal pyridyl disulfide groups can be quantitatively replaced by a functional thiol using selective thiol‐disulfide exchange and thus produces functional telechelic poly(disulfide)s, which can be used as a macroinitiator to initiate ring‐opening poly­merization of a cyclic lactide monomer generating an ABA‐type triblock copolymer with degradable B block.

  相似文献   


18.
Diblock metallopolymer polyelectrolytes containing the two redox‐robust cationic sandwich units [CoCp′Cp]+ and [FeCp′(η6‐C6Me6)]+ (Cp = η5‐C5H5; Cp′ = η5‐C5H4‐) as hexafluorophosphate ([PF6]) salts are synthesized by ring‐opening metathesis polymerization using Grubbs' third generation catalyst. Their electrochemical properties show full chemical and electrochemical reversibilities allowing fine determination of the copolymer molecular weight using Bard–Anson's electrochemical method by cyclic voltammetry.

  相似文献   


19.
Divalent samarocene complex [(C5H9C5H4)2Sm(tetrahydrofuran)2] was prepared and characterized and used to catalyze the ring‐opening polymerization of L ‐lactide (L‐LA) and copolymerization of L‐LA with caprolactone (CL). Several factors affecting monomer conversion and molecular weight of polymer, such as polymerization time, temperature, monomer/catalyst ratio, and solvent, were examined. The results indicated that polymerization was rapid, with monomer conversions reaching 100% within 1 h, and the conformation of L‐LA was retained. The structure of the block copolymer of CL/L‐LA was characterized by NMR and differential scanning calorimetry. The morphological changes during crystallization of poly(caprolactone) (PCL)‐b‐P(L‐LA) copolymer were monitored with real‐time hot‐stage atomic force microscopy (AFM). The effect of temperature on the morphological change and crystallization behavior of PCL‐b‐P(L‐LA) copolymer was demonstrated through AFM observation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2667–2675, 2003  相似文献   

20.
Novel biodegradable poly(ester anhydride) block copolymers based on ε‐caprolactone (ε‐CL) and adipic anhydride (AA) were prepared by sequential polymerization. ε‐CL was first initiated by potassium poly(ethylene glycol)ate and polymerized into active chains (PCL‐O?K+), which were then used to initiate the ring‐opening polymerization of AA. The effects of the AA feed ratio, solvent polarity, monomer concentration, and temperature on sequential polymerization were investigated. The copolymers, obtained under different conditions, were characterized by Fourier transform infrared, 1H NMR, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). The GPC results showed that the weight‐average molecular weights of the block copolymers were approximately 6.0 × 104. The DSC results indicated the immiscibility of the two components. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1511–1520, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号