首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study various improved staggered quark Dirac operators on quenched gluon backgrounds in lattice QCD generated using a Symanzik-improved gluon action. We find a clear separation of the spectrum into would-be zero modes and others. The number of would-be zero modes depends on the topological charge as expected from the index theorem, and their chirality expectation value is large ( approximately 0.7). The remaining modes have low chirality and show clear signs of clustering into quartets and approaching the random matrix theory predictions for all topological charge sectors. We conclude that improvement of the fermionic and gauge actions moves the staggered quarks closer to the continuum limit where they respond correctly to QCD topology.  相似文献   

2.
We investigate the topological properties of the tight-binding electrons on the two-dimensional kagomé lattice with two kinds of short-range hopping integral and two kinds of staggered magnetic flux. Considering the nearest-neighbor hopping (t(1)) with the staggered flux parameter φ(1) and the next nearest-neighbor hopping (t(2)) with the staggered flux parameter φ(2), we demonstrate a series of topological quantum phase transitions and find some topological bands with high Chern numbers, when tuning one parameter (t(2) or φ(2)) while the others are fixed. We have also found that, in some parameter regions, the system exhibits interesting topological flat bands with Chern number C =± 1 and a large gap above them, and the flatness ratio can reach a high value of about 170.  相似文献   

3.
《Nuclear Physics B》1988,298(3):557-585
Local (axial) vector currents and (pseudo) scalar fields are constructed, renormalized and used to derive Ward-Takahashi relations for staggered fermions in lattice QCD. With the help of these a lattice derivation is given of the Witten-Veneziano formula for the flavor singlet pseudoscalar particle. We discuss how the ensuing topological susceptibility is to be evaluated and argue that it is finite.  相似文献   

4.
We investigate possible phase transitions among the different topological insulators in a honeycomb lattice under the combined influence of spin-orbit couplings and staggered magnetic flux. We observe a series of topological phase transitions when tuning the flux amplitude, and find topologically nontrivial phases with high Chern number or spin-Chern number. Through tuning the exchange field, we also find a new quantum state which exhibits the electronic properties of both the quantum spin Hall state and quantum anomalous Hall state. The topological characterization based on the Chern number and the spin-Chern number are in good agreement with the edge-state picture of various topological phases.  相似文献   

5.
《Physics letters. [Part B]》1987,194(3):433-437
In this pilot study we use staggered fermions to estimate the topological susceptibility of SU(3) lattice gauge theory at β = 5.7.  相似文献   

6.
We deliver the realistic ab initio lattice investigations of KK^- scattering. In the Asqtad-improved staggered dynamical fermion formulation, we carefully measure KK^- four-point function in the I=0 channel by moving wall sources without gauge fixing, and clearly find an attractive interaction in this channel, which is in agreement with the theoretical predictions. An essential ingredient in our lattice calculation is to properly treat the disconnected diagram. Moreover, we explain the difficulties of these lattice calculations, and discuss the way to improve the statistics. Our lattice investigations are carried out with the MILC 2 + 1 gauge configuration at lattice spacing a ≈ 0.15 fro.  相似文献   

7.
Physical spin configurations corresponding to topological excitations, expected to be present in the XY limit of a quantum spin 1/2 Heisenberg anti-ferromagnet, are probed on a two dimensional square lattice. Quantum vortices (anti-vortices) are constructed in terms of coherent staggered spin field components, as limiting case of meronic (anti-meronic) configurations. The crucial role of the associated Wess-Zumino-like (WZ-like) term is highlighted in our procedure. The time evolution equation of coherent spin fields used in this analysis is obtained by applying variational principle on the quantum Euclidean action corresponding to the Heisenberg anti-ferromagnet on lattice. It is shown that the WZ-like term can distinguish between vortices and anti-vortices only in a charge sector with odd topological charges. Our formalism is distinctly different from the conventional approach for the construction of quantum vortices (anti-vortices).  相似文献   

8.
We compare analytic predictions of non-Hermitian chiral random matrix theory with the complex Dirac operator eigenvalue spectrum of two-color lattice gauge theory with dynamical fermions at nonzero chemical potential. The Dirac eigenvalues come in complex conjugate pairs, making the action of this theory real and positive for our choice of two staggered flavors. This enables us to use standard Monte Carlo simulations in testing the influence of the chemical potential and quark mass on complex eigenvalues close to the origin. We find excellent agreement between the analytic predictions and our data for two different volumes over a range of chemical potentials below the chiral phase transition. In particular, we detect the effect of unquenching when going to very small quark masses.  相似文献   

9.
We have investigated topological confinement effects of edge potentials on gapless edge states in zigzag-edge graphene nanoribbons (ZGNRs) under a staggered bulk potential. A variety of gapless edge states were predicted with the concept of topological confinement effect alone, which was confirmed by using tight-binding model calculations. Half-metallicity of ZGNR, which has been semiclassically described, was revealed to fundamentally result from a topological confinement effect. Edge potentials were found to allow an infinitesimal staggered bulk potential to result in gapless edge states, regardless of the ribbon width. A uniform or staggered potential applied to the boundary region narrower than a critical width was found to play a role of the edge potentials, and the critical width was estimated.  相似文献   

10.
罗天琦  关欣  樊景涛  陈刚  贾锁堂 《中国物理 B》2022,31(1):14208-014208
Topological quantum states have attracted great attention both theoretically and experimentally.Here,we show that the momentum-space lattice allows us to couple two Su-Schrieffer-Heeger(SSH)chains with opposite dimerizations and staggered interleg hoppings.The coupled SSH chain is a four-band model which has sublattice symmetry similar to the SSH4.Interestingly,the topological edge states occupy two sublattices at the same time,which can be regarded as a one-dimension analogue of the type-II corner state.The analytical expressions of the edge states are also obtained by solving the eigenequations.Finally,we provide a possible experimental scheme to detect the topological winding number and corresponding edge states.  相似文献   

11.
The Floquet topological phases and chiral edge states in a kagome lattice under a circularly-polarized driving field are studied. In the off-resonant case, the system exhibits the similar character as the kagome lattice model with staggered magnetic fluxes, but the total band width is damped in oscillation. In the on-resonant case, the degeneracy splitting at the Γ point does not always result in a gap. The positions of the other two gaps are influenced by the flat band. With the field intensity increased, these two gaps undergo closing-then-reopening processes, accompanied with the changing of the winding numbers.  相似文献   

12.
We report on the first observation of bosons condensed into the energy minima of an F band of a bipartite square optical lattice. Momentum spectra indicate that a truly complex-valued staggered angular momentum superfluid order is established. The corresponding wave function is composed of alternating local F2x3-3x ± iF2y3-3y orbits and local S orbits residing in the deep and shallow wells of the lattice, which are arranged as the black and white areas of a checkerboard. A pattern of staggered vortical currents arises, which breaks time-reversal symmetry and the translational symmetry of the lattice potential. We have measured the populations of higher order Bragg peaks in the momentum spectra for varying relative depths of the shallow and deep lattice wells and find remarkable agreement with band calculations.  相似文献   

13.
We demonstrate a novel method of introducing point defects (mono- and divacancies) in a confined monolayer colloidal crystal by manipulating individual particles with optical tweezers. Digital video microscopy is used to study defect dynamics in real space and time. We verify the numerical predictions that the stable configurations of the defects have reduced symmetry compared to the triangular lattice and discover that in addition they are characterized by distinct topological arrangements of the particles in the defect core. Surprisingly, point defects are thermally excited into separated dislocations, from which we extract the dislocation pair potential.  相似文献   

14.
Staggered formalism of lattice fermion can be cast into a form of direct product K-cycle in noncommutative geometry. We prove the correspondence between this staggered K-cycle and a canonically defined K-cycle for finitely generated Abelian groups where a lattice appears as a special case.  相似文献   

15.
We review geometrical definitions of the topological charge for lattice field theories, in particular lattice gauge theories. Some recent Monte Carlo calculations of the topological susceptibility based upon these definitions are described. They are compared with alternative approaches.  相似文献   

16.
We investigate a tight-binding model of the ruby lattice with Rashba spin-orbit coupling. We calculate the band structure of the lattice and evaluate the Z2 topological indices. According to the Z2 topological indices and the band structure, we present the phase diagrams of the lattice with different filling fractions. We find that topological insulators occur in some range of parameters at 1/6, 1/3, 1/2, 2/3 and 5/6 filling fractions. We analyze and discuss the characteristics of these topological insulators and their edge states.  相似文献   

17.
David H. Adams   《Nuclear Physics B》2002,640(3):435-452
The families index theory for the overlap lattice Dirac operator is applied to derive topological features of the space of SU(N) lattice gauge fields on the 4-torus: the topological sectors, specified by the fermionic topological charge, are shown to contain noncontractible even-dimensional spheres when N3, and noncontractible circles in the N=2 case. We describe how certain obstructions to the existence of gauge fixings without the Gribov problem in the continuum setting correspond on the lattice to obstructions to the contractibility of these spheres and circles. We also point out a canonical connection on the space of lattice gauge fields with monopole-like singularities associated with the spheres.  相似文献   

18.
We investigate a tight-binding model of the ruby lattice with Rashba spin-orbit coupling. We calculate the band structure of the lattice and evaluate the Z2 topological indices. According to the Z2 topological indices and the band structure, we present the phase diagrams of the lattice with different filling fractions. We find that topological insulators occur in some range of parameters at 1/6, 1/3, 1/2, 2/3 and 5/6 filling fractions. We analyze and discuss the characteristics of these topological insulators and their edge states.  相似文献   

19.
We investigate how the topological charge density in lattice QCD simulations is affected by violations of chiral symmetry caused by the fermion action. To this end we compare lattice configurations generated with a number of different actions including first configurations generated with exact dynamical overlap quarks. We visualize the topological profiles after mild smearing. In the topological charge correlator we measure the size of the positive core, which is known to shrink to zero extension in the continuum limit. To leading order we find the core size to scale linearly with the lattice spacing with the same coefficient for all actions, even including quenched simulations. In the subleading term the different actions vary over a range of about 10%. Our findings suggest that non-chiral lattice actions at current lattice spacings do not differ much for observables related to topology, both among themselves and compared to overlap fermions.  相似文献   

20.
We outline a lattice method, using staggered fermions, for the evaluation of matrix elements relevant for weak decays of strange mesons. We require three inversions per configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号