首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 87 毫秒
1.
In this paper, the maintenance problem for a cold standby system consisting of two dissimilar components and one repairman is studied. Assume that both component 1 and component 2 after repair follow geometric process repair and component 1 is given priority in use when both components are workable. Under these assumptions, using geometric process repair model, we consider a replacement policy N under which the system is replaced when the number of failures of component 1 reaches N. Our purpose is to determine an optimal replacement policy N1 such that the average cost rate (i.e. the long-run average cost per unit time) of the system is minimized. The explicit expression for the average cost rate of the system is derived and the corresponding optimal replacement policy N1 can be determined analytically or numerically. Finally, a numerical example is given to illustrate some theoretical results and the model applicability.  相似文献   

2.
The k-out-of-n system is a system consisting of n independent components such that the system works if and only if at least k of these n components are successfully running. Each component of the system is subject to shocks which arrive according to a nonhomogeneous Poisson process. When a shock takes place, the component is either minimally repaired (type 1 failure) or lying idle (type 2 failure). Assume that the probability of type 1 failure or type 2 failure depends on age. First, we investigate a general age replacement policy for a k-out-of-n system that incorporates minimal repair, shortage and excess costs. Under such a policy, the system is replaced at age T or at the occurrence of the (n-k + 1)th idle component, whichever occurs first. Moreover, we consider another model; we assume that the system operates some successive projects without interruptions. The replacement could not be performed at age T. In this case, the system is replaced at the completion of the Nth project or at the occurrence of the (n-k + 1)th idle component, whichever occurs first. For each model, we develop the long term expected cost per unit time and theoretically present the corresponding optimum replacement schedule. Finally, we give a numerical example illustrating the models we proposed. The proposed models include more realistic factors and extend many existing models.  相似文献   

3.
This paper analyses respectively the expected warranty costs from the perspectives of the manufacturer and the consumer. For a two-component series system with stochastic dependence between components, both the non-renewing free replacement policy and the renewing replacement policy are examined. It is assumed that whenever component 1 fails, a random damage to component 2 is occurred while a component 2 failure causes the system failure. Component 2 fails when its total accumulative damage exceeds a pre-determined level L. By considering the consumer’s behavior and the product service time, the warranty costs allocations between the manufacturer and the consumer are presented. Numerical examples are given to demonstrate the applicability of the methodology. It is proved that, independent of the type of the warranty policy, the failure interaction between components impacts the manufacturer profits and the consumer costs. The initial warranty length has also an impact on the product quality preferences to both the consumer and the manufacturer.  相似文献   

4.
In this paper, a cold standby repairable system consisting of two dissimilar components and one repairman is studied. In this system, it is assumed that the working time distributions and the repair time distributions of the two components are both exponential and component 1 is given priority in use. After repair, component 2 is “as good as new” while component 1 follows a geometric process repair. Under these assumptions, using the geometric process and a supplementary variable technique, some important reliability indices such as the system availability, reliability, mean time to first failure (MTTFF), rate of occurrence of failure (ROCOF) and the idle probability of the repairman are derived. A numerical example for the system reliability R(t) is given. And it is considered that a repair-replacement policy based on the working age T of component 1 under which the system is replaced when the working age of component 1 reaches T. Our problem is to determine an optimal policy T such that the long-run average cost per unit time of the system is minimized. The explicit expression for the long-run average cost per unit time of the system is evaluated, and the corresponding optimal replacement policy T can be found analytically or numerically. Another numerical example for replacement model is also given.  相似文献   

5.
Novel replacement policies that are hybrids of inspection maintenance and block replacement are developed for an n identical component series system in which the component parts used at successive replacements arise from a heterogeneous population. The heterogeneous nature of components implies a mixed distribution for time to failure. In these circumstances, a hybrid policy comprising two phases, an early inspection phase and a later wear-out replacement phase, may be appropriate. The policy has some similarity to burn-in maintenance. The simplest policy described is such a hybrid and comprises a block-type or periodic replacement policy with an embedded block or periodic inspection policy. We use a three state failure model, in which a component may be good, defective or failed, in order to consider inspection maintenance. Hybrid block replacement and age-based inspection, and opportunistic hybrid policies will also arise naturally in these circumstances and these are briefly investigated. For the simplest policy, an approximation is used to determine the long-run cost and the system reliability. The policies have the interesting property that the system reliability may be a maximum when the long-run cost is close to its minimum. The failure model implies that the effect of maintenance is heterogeneous. The policies themselves imply that maintenance is carried out more prudently to newer than to older systems. The maintenance of traction motor bearings on underground trains is used to illustrate the ideas in the paper.  相似文献   

6.
This paper takes up the reliability and preventive replacement problems for a K-out-of-n system, where K is a stochastic parameter provided. Firstly, we consider the case when K is predefined as constant numbers as is done with the traditional method, and obtain the system reliability R(t), mean time to failure (MTTF), and replacement policies, in which the number n of units for replacement and replacement time T of operation are, respectively, optimized. Secondly, we focus on the above discussions again when K cannot be predefined constantly, but it is a random variable with an estimated probability function. Furthermore, we give approximate computations in an easier way for MTTF, optimal number n* and replacement time T*, respectively.  相似文献   

7.
This paper takes up age and periodic replacement last models with working cycles, where the unit is replaced before failure at a total operating time T or at a random working cycle Y, whichever occurs last, which is called replacement last. Expected cost rates are formulated, and optimal replacement policies which minimize them are discussed analytically. Comparisons between such a replacement last and the conventional replacement first are made in detail. It is determined theoretically and numerically which policy is better than the other according to the ratios of replacement costs and how the mean time of working cycles affects the comparison results. It is also shown that the unit can be operating for a longer time and avoid unnecessary replacements when replacement last is done. For further studies, expected cost rates of modified models and their applications in a standard cumulative damage model with working cycles are obtained and computed numerically. Finally, case studies on replacement last and first in maintaining electronic systems of naval ships under battle and non-battle statuses are given.  相似文献   

8.
In some factories production epochs occur that allow system components to be replaced at reduced cost. Over a long production run the unit cost of replacing these stochastically deteriorating components can be controlled by decisions which govern when production is to be interrupted for component replacement and when components are to be replaced at the reduced cost replacement opportunities. This paper develops and analyses models for optimizing "interrupt and opportunistic" replacement strategies in simple systems. Numerical results are given that illustrate the advantages of combining interrupt replacement with opportunistic replacement.  相似文献   

9.
In this paper, the optimal replacement problem is investigated for a system with two types of failures. One type of failure is repairable, which is conducted by a repairman when it occurs, and the other is unrepairable, which leads to a replacement of the system at once. The repair of the system is not “as good as new”. The consecutive operating times of the system after repair form a decreasing geometric process, while the repair times after failure are assumed to be independent and identically distributed. Replacement policy N is adopted, where N is the number of repairable failures. The system will be replaced at the Nth repairable failure or at the unrepairable failure, whichever occurs first. Two replacement models are considered, one is based on the limiting availability and the other based on the long-run average cost rate of the system. We give the explicit expressions for the limiting availability and the long-run average cost rate of the system under policy N, respectively. By maximizing the limiting availability A(N) and minimizing the long-run average cost rate C(N), we theoretically obtain the optimal replacement policies N in both cases. Finally, some numerical simulations are presented to verify the theoretical results.  相似文献   

10.
Identical components are considered, which become obsolete once new‐type ones are available, more reliable and less energy consuming. We envision different possible replacement strategies for the old‐type components by the new‐type ones: either purely preventive, where all old‐type components are replaced as soon as the new‐type ones are available; either purely corrective, where the old‐type ones are replaced by new‐type ones only at failure; or a mixture of both strategies, where the old‐type ones are first replaced at failure by new‐type ones and next simultaneously preventively replaced after a fixed number of failed old‐type components. To evaluate the respective value of each possible strategy, a cost function is considered, which represents the mean total cost on some finite time interval [0, t]. This function takes into account replacement costs, with economical dependence between simultaneous replacements, and also some energy consumption (and/or production) cost, with a constant rate per unit time. A full analytical expression is provided for the cost function induced by each possible replacement strategy. The optimal strategy is derived in long‐time run. Numerical experiments conclude the paper. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The periodic replacement with minimal repair at failures is studied by many authors, however, there is not a clear definition for minimal repair. This paper defines a minimal repair in the term of the failure rate and devices some probability quantities and reliability properties. As an application of these results, the replacement model where a system is replaced at time T or at nth failure are considered and the optimum policies are discussed.  相似文献   

12.
This paper considers a number-dependent replacement policy for a system with two failure types that is replaced at the nth type I (minor) failure or the first type II (catastrophic) failure, whichever occurs first. Repair or replacement times are instantaneous but spare/replacement unit delivery lead times are random. Type I failures are repaired at zero cost since preventive maintenance is performed continuously. Type II failures, however, require costly system replacement. A model is developed for the average cost per unit time based on the stochastic behavior of the system and replacement, storage, and downtime costs. The cost-minimizing policy is derived and discussed. We show that the optimal number of type I failures triggering replacement is unique under certain conditions. A numerical example is presented and a sensitivity analysis is performed.  相似文献   

13.
This paper is concerned with when to implement preventive maintenance (PM) and replacement for a repairable ‘single-unit’ system in use. Under the main assumption that a ‘single-unit’ system gradually deteriorates with time, a sequential method is proposed to determine an optimal PM and replacement strategy for the system based on minimising expected loss rate. According to this method, PM epochs are determined one after the other, and consequently we can make use of all previous information on the operation process of the system. Also the replacement epoch depends on the effective age of the system. A numerical example shows that the sequential method can be used to solve the PM and replacement problem of a ‘single-unit’ system efficiently. Some properties of the loss functions W(L? n ,b? n ) and W? r (N) with respect to PM and replacement respectively are discussed in the appendix.  相似文献   

14.
A system is subject to shocks that arrive according to a non-homogeneous Poisson process. As shocks occur a system has two types of failures: type I failure (minor failure) is rectified by a minimal repair, whereas type II failure (catastrophic failure) is removed by replacement. The probability of a type II failure is permitted to depend on the number of shocks since the last replacement. This paper proposes a generalized replacement policy where a system is replaced at the nth type I failure or first type II failure or at age T, whichever occurs first. The cost of the minimal repair of the system at age t depends on the random part C(t) and deterministic paper c(t). The expected cost rate is obtained. The optimal n1 and optimal T1 which would minimize the cost rate are derived and discussed. Various special cases are considered and detailed.  相似文献   

15.
We consider the problem of combining replacements of multiple components in an operational planning phase. Within an infinite or finite time horizon, decisions concerning replacement of components are made at discrete time epochs. The optimal solution of this problem is limited to only a small number of components. We present a heuristic rolling horizon approach that decomposes the problem; at each decision epoch an initial plan is made that addresses components separately, and subsequently a deviation from this plan is allowed to enable joint replacement. This approach provides insight into why certain actions are taken. The time needed to determine an action at a certain epoch is only quadratic in the number of components. After dealing with harmonisation and horizon effects, our approach yields average costs less than 1% above the minimum value.  相似文献   

16.
A periodic review replacement system is considered. The amount of deterioration over successive periods forms a sequence of i.i.d. random variables. A replacement policy of the dyadic type is in effect whereby the used equipment item is discarded and immediately replaced by a new identical equipment item if at the end of a period the old equipment has service aged by an amount in excess of S or has been in operation for exactly N periods whichever comes first. Using a theorem on renewal reward processes, an expression for the total steady-state expected cost per period is derived, consisting of a fixed replacement cost and a linear cost of operation. Optimal values of S and N that minimize this steady state cost are computed for a few numerical examples, when the service aging per period has a gamma distribution.  相似文献   

17.
In this paper, we study a geometric process model for M/M/1 queueing system with a repairable service station. By introducing a supplementary variable, some queueing characteristics of the system and reliability indices of the service station are derived. Then a replacement policy N for the service station by which the service station will be replaced following the Nth failure is applied. An optimal replacement policy N1 for minimizing the long-run average cost per unit time for the service station is then determined.  相似文献   

18.
Different models have been proposed in the field of preventive maintenance planning for finding optimal age replacement policies. While previous studies have focused mainly on classical cost objectives, this paper presents a novel multi-objective model for preventive replacement of a part over a planning horizon. The proposed model considers different objectives and practical issues, such as corrective replacement and its consequences, residual lifetime objective, and kind of productivity index. Also, the model determines number of spare parts, required for replacement with the defected part, to be provided at the beginning of the planning horizon. The multi-objective model is applicable for machines or equipments which are repaired through replacing their defected part with new spare part.For solving the multi-objective model, regarding to ability of ε-constraint method to generate different pareto-optimal solutions, a procedure is developed based on this method. The procedure shows how the ε-constraint method can be used for finding preferred solution in situations where there is no access to decision maker. The model and solution procedure are illustrated by a numerical example.  相似文献   

19.
In this paper, we study a modified minimal repair/replacement problem that is formulated as a Markov decision process. The operating cost is assumed to be a nondecreasing function of the system's age. The specific maintenance actions for a manufacturing system to be considered are whether to have replacement, minimal repair or keep it operating. It is shown that a control limit policy, or in particular a (t, T) policy, is optimal over the space of all possible policies under the discounted cost criterion. A computational algorithm for the optimal (t, T) policy is suggested based on the total expected discounted cost.  相似文献   

20.
Given an initial graph G, one may apply a rule R to G which replaces certain vertices of G with other graphs called replacement graphs to obtain a new graph R(G). By iterating this procedure, a sequence of graphs {Rn(G)} is obtained. When each graph in this sequence is normalized to have diameter one, the resulting sequence may converge in the Gromov-Hausdorff metric. In this paper, we compute the topological dimension of limit spaces of normalized sequences of iterated vertex replacements involving more than one replacement graph. We also give examples of vertex replacement rules that yield fractals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号