首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Suitably activated, (Cp*){N(tBu)C(Me)N(Et)}ZrMe2 is known to initiate the ‘living’ and isotactic‐selective polymerization of alk‐1‐enes, and it can be used to synthesize block copolymers and stereoblock polymers. We report a full molecular kinetic investigation of propene, but‐1‐ene, and hex‐1‐ene polymerization with a MAO‐activated catalyst system. By combining NMR microstructural polymer analysis with QM modeling of the active species, the complicated regio‐ and stereochemistry of the polyinsertion process, as well as the active chain‐transfer pathways, are investigated. The perspectives and limitations of this catalyst for application in (stereo)block polymerizations are discussed.

  相似文献   


2.
L,L ‐lactide (LA) and ε‐caprolactone (CL) block copolymers have been prepared by initiating the poly(ε‐caprolactone) (PCL) block growth with living poly(L,L ‐lactide) (PLA*). In the previous attempts to prepare block copolymers this way only random copolyesters were obtained because the PLA* + CL cross‐propagation rate was lower than that of the PLA–CL* + PLA transesterification. The present paper shows that application of Al‐alkoxide active centers that bear bulky diphenolate ligands results in efficient suppression of the transesterification. Thus, the corresponding well‐defined di‐ and triblock copolymers could be prepared.

  相似文献   


3.
Thiol‐responsive symmetric triblock copolymers having single disulfide linkages in the middle blocks (called mono‐cleavable block copolymers, ss‐ABP2) were synthesized by atom transfer radical polymerization in the presence of a disulfide‐labeled difunctional Br‐initiator. These brush‐like triblock copolymers consist of a hydrophobic polyacrylate block having pendent oligo(propylene oxide) and a hydrophilic polymethacrylate block having pendent oligo(ethylene oxide). Gel permeation chromatography and 1H NMR results confirmed the synthesis of well‐defined mono‐cleavable block copolymers and revealed that polymerizations were well controlled. Because of amphiphilic nature, these copolymers self‐assembled to form colloidally stable micelles above critical micellar concentration of 0.032 mg · mL−1. In response to reductive reactions, disulfides in thiol‐responsive micelles were cleaved. Atomic force microscopy and dynamic light scattering analysis suggested that the cleavage of disulfides caused dissociation of micelles to smaller‐sized assembled structures in water. Moreover, in a biomedical perspective, the mono‐cleavable block copolymer micelles are not cytotoxic and thus biocompatible.

  相似文献   


4.
Block copolymer nanopaticles were prepared from the mixture solutions containing good/poor solvents by a simple evaporation process. The block copolymers formed disorder, unidirectionally stacked lamellar, and onion‐like structures in nanoparticles depending on preparation temperatures. Thermal annealing induced the disorder‐order phase transition and order‐order phase transformation in the block copolymer nanoparticles, even though the annealing temperature is lower than the of one polymer segment. The unusual thermal behaviors suggest that the glass transition temperature of the block copolymer is decreased by the effect of nanoparticle, whose surface areas are larger than their volumes.

  相似文献   


5.
Metallo‐supramolecular chemistry offers possibilities for the construction of stimuli‐responsive polymeric materials where the environment can have a large impact on the reversibility and strength of interactions between the individual components. The potential of manipulating the strength of the intermolecular non‐covalent bonds can result in impressive modifications of the metallo‐supramolecular structure and, subsequently, produces changes in the properties of the designed material. The present feature article provides an overview on recent developments in the field of metallo‐polymerization of chelating terpyridyl and analogues ligands. Synthetic strategies are described followed by a discussion regarding the characterization and the application of the reviewed metallo‐supramolecular structures, mainly based on terpyridines.

  相似文献   


6.
A novel pH‐responsive polymer vesicle obtained by the aqueous self‐assembly of carboxy‐terminated hyperbranched polyesters is reported. The synthesis is very simple, just a one‐step esterification of the commercially available hydroxy‐terminated hyperbranched polyester of Boltorn Hx (x = 20, 30, 40) with succinic anhydride. The vesicle size can be controlled from 200 nm to 10 µm by simply adjusting the solution pH as well as the degrees of branching (or generation).

  相似文献   


7.
Well‐defined amphiphilic block‐graft copolymers PCL‐b‐[DTC‐co‐(MTC‐mPEG)] with polyethylene glycol methyl ether pendant chains were designed and synthesized. First, monohydroxyl‐terminated macroinitiators PCL‐OH were prepared. Then, ring‐opening copolymerization of 2,2‐dimethyltrimethylene carbonate (DTC) and cyclic carbonate‐terminated PEG (MTC‐mPEG) macromonomer was carried out in the presence of the macroinitiator in bulk to give the target copolymers. All the polymers were characterized by 1H NMR and gel permeation chromatography (GPC). The polymers have unimodal molecular weight distributions and moderate polydispersity indexes. The amphiphilic block‐graft copolymers self‐assemble in water forming stable micelle solutions with a narrow size distribution.

  相似文献   


8.
A series of novel temperature and pH responsive block copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM) and poly(L ‐lysine) (PLL) were synthesized. The effect of pH and the length of PLL on the lower critical solution temperature (LCST) of PNIPAM, and the self‐assembly of these PLL‐based copolymers induced by temperature and pH changes were investigated by the cloud point method, dynamic light scattering (DLS) and environmental scanning electron microscopy (ESEM). These PNIPAM‐b‐PLL copolymers can self‐assemble into micelle‐like aggregates with PNIPAM as the hydrophobic block at acidic pH and high temperatures; and at alkaline pH and low temperatures, they can self‐assemble into particles with PLL as the hydrophobic block. The copolymers may have potential applications in biotechnological and biomedical areas as drug release carriers.

  相似文献   


9.
A series of well‐defined rod‐coil PAA‐b‐DPS block copolymers, containing Fréchet‐type dendronized polystyrene (DPS) with different generation as a rod‐like hydrophobic block and poly(acrylic acid) (PAA) as a hydrophilic coil were synthesized. The procedure included the following steps: the precursor PMA‐b‐DPS copolymer was prepared through ATRP of Fréchet‐type dendritic styrene macromonomer bearing the first to the third generation (G1–G3), respectively, initiated by poly(methyl acrylate) (PMA‐Br). Then, by converting PMA into PAA by subsequent hydrolysis, the targeted amphiphilic copolymers were obtained. Moreover, by using the rod‐coil amphiphiles as building blocks, large compound micelles and vesicles were formed in a binary solvent mixture of DMF/H2O. Morphological changes in self‐assembly showed dependence on the length of the dendronized block.

  相似文献   


10.
Numerical SCFT simulations of inhomogeneous polymers at the mesoscale can easily become computationally extremely demanding as the size (spatial resolution) of the simulated 3D system increases, making massively parallel computing a necessity. A new parallel algorithm for large‐scale 3D SCFT simulations of rod‐coil copolymers with interplay between microphase separation and orientational ordering is presented. For large systems, this algorithm scales well up to 1024 processors, achieving more than 200‐fold speedups. While existing SCFT simulations were limited to studying 1D and 2D models, this algorithm is applied to new, intrinsic 3D structures such as a hexagonally arranged columnar morphology that possesses macroscopic chirality arising as a result of spontaneous symmetry breaking.

  相似文献   


11.
Summary: Amphiphilic triblock copolymers (PEOxb‐PDMSyb‐PEOx) with different block lengths were synthesized and multi‐morphological complex crew‐cut, star‐like, and short‐chain aggregates were prepared by self‐assembly of the given copolymers. The morphologies and dimensions of the aggregates can be well controlled by variation of the preparation conditions. TEM, SEM, FFR‐TEM, and LLS studies show the resulting morphologies range from LCMs, unilamellar or multilayer vesicles, LCVs, porous spheres to nanorods.

TEM images of the vesicles formed from PEO‐b‐PDMS‐b‐PEO.  相似文献   


12.
Summary: Phosphonate groups were introduced into block copolymers of styrene derivatives either as single end‐groups or as small blocks using nitroxide‐mediated radical polymerization. In order to combine the hydrophobic and hydrophilic segments, block copolymers with N,N‐dimethyl acrylamide were synthesized. After hydrolysis to phosphonic acid groups, adsorption of the polymer onto metal oxides was possible.

Conversion of the phosphonate groups by transesterification with trimethylbromosilane (TMBS), followed by hydrolysis of the silylester group.  相似文献   


13.
14.
Summary: A series of novel mesogen‐jacketed liquid crystal miktoarm star rod‐coil block copolymers were synthesized via atom transfer radical polymerization (ATRP). Their architectures {coil conformation of styrene segment and rigid rod conformation of {2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene} (MPCS) segment} were confirmed by GPC, 1H NMR, and MALDI‐TOF studies. The liquid crystalline behaviors of the synthesized copolymers are evidenced from POM observation. The liquid crystalline phase depends on the molecular weights of the rigid rod arm of miktoarm star copolymers.

Miktoarm star rod‐coil block copolymer.  相似文献   


15.
A thermoresponsive block copolymer, namely poly(acryloyl glucosamine)‐block‐poly(N‐isopropylacryamide) (PAGA180b‐PNIPAAM350) was simultaneously self‐assembled and crosslinked in aqueous medium via RAFT polymerization at 60 °C to afford core‐crosslinked micelles exhibiting a glycopolymer corona and a PNIPAAM stimuli‐responsive core. An acid‐labile crosslinking agent, 3,9‐divinyl‐2,4,8,10‐tetraoxaspiro[5.5]undecane, was employed to generate thermosensitive and acid‐degradable core‐shell nanoparticles. Stable against degradation at pH = 6 and 8.2, the resulting core crosslinked micelles readily hydrolyzed into well‐defined free block copolymers at lower pH (30 min and 12 h respectively at pH = 2 and 4).

  相似文献   


16.
A functional coil–rod–coil triblock copolymer containing a terfluorene unit as the rigid segment and poly(N‐isopropylacrylamide) (PNIPAAm) as the flexible block was successfully synthesized via reversible addition–fragmentation chain‐transfer (RAFT) polymerization using terfluorene‐based dithioester as the RAFT agent. The temperature‐responsive optical properties were investigated with the aid of dynamic light scattering and fluorescence techniques. Additionally, the relationship between the optical properties and the reversible phase transition of the doping system formed by blending the copolymer with tetraphenylporphine tetrasulfonic acid was studied. Above the lower critical solution temperature, the energy transfer efficiency decreased as a result of the globule–to–coil transition from PNIPAAm segments. The result indicates that these copolymers have a potential to be used as responsive fluorescent probes in facile detection of dye‐labeled biopolymers.

  相似文献   


17.
Self‐assembly of two‐dimensional (2D) structures from functional molecules is of great scientific importance. Herein, using a typical linear conducting polymer, polyaniline as building blocks, 2D single crystalline microplates are successively produced. The structure of 2D microplates is clearly defined by selected area electron diffraction, X‐ray diffraction, and Raman spectroscopy. Owing to the anisotropic arrangement of linear conjugated PANI molecules, the microplate shows a typical anisotropic electrical transport property.

  相似文献   


18.
We propose a model of molecular motor based on diblock copolymer strongly adsorbed on a patterned surface. One of the blocks of the copolymer is modeled as field responsive. It is shown that time‐periodic collapse‐readsorption of the responsive block leads to the directed motion (reptation) of the molecule along the “track” provided by the surface pattern. Both the Langevin dynamics (LD) technique of computer simulation for the bead‐spring model and numerical solution of the Newton equations of a simplified (toy) model of the copolymer are used. The physical reason of directionality of the motion is shown to be an anisotropy of the friction of the molecule with the surface.

  相似文献   


19.
Based on their rigid‐rod structure all‐conjugated, rod‐rod block copolymers show a preferred tendency to self‐assemble into low‐curvature vesicular or lamellar nanostructures independent from their specific chemical structure and composition. This unique and attractive behaviour is clearly illustrated in a few examples of such all‐conjugated block copolymers. The resulting nanostructured heteromaterials may find applications in electronic devices or artificial membranes.

  相似文献   


20.
Summary: Nanostructured thermosetting materials were prepared by modification of an epoxy resin with 30 wt.‐% epoxidized polystyrene‐block‐polybutadiene copolymer (PS‐b‐PepB). The copolymer self‐assembles into a well‐defined hexagonal nanoordered structure, of around 30‐nm diameter, thus establishing its use as structure‐directing agent to generate nanostructured thermosetting materials. The study confirms pathways towards tailoring interactions between thermosetting matrices and immiscible block copolymers by using the concept of functionalization to build nanostructured polymer matrices.

Structure of diglycidyl ether of bisphenol‐A/4,4′‐methylenebis(3‐chloro 2,6‐diethylaniline) cured blend containing 30 wt.‐% PS‐b‐PepB61 block copolymer.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号