首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Thermochimica Acta》2003,396(1-2):57-65
Compressed gases such as CO2 above their critical temperatures provide a highly tunable technique that has been shown to induce changes in phase behavior, crystallization kinetics and morphology of the polymers. Gas induced plasticization of the polymer matrix has been studied in a large number of polymers such as polystyrene, and poly(ethylene terephathalate). The knowledge of polymer–gas interactions is fundamental to the study of phenomena such as solubility and diffusivity of gases in polymers, dilation of polymers and in the development of applications such as foams and barrier materials.In this paper, we describe the interactions of compressed CO2 with isotactic polypropylene (PP). Crystallization of various PPs in presence of compressed CO2 was evaluated using a high pressure differential scanning calorimeter (HPDSC). CO2 plasticized the polymer matrix and decreased the crystallization temperature, Tc by ∼8 °C for PP at a pressure of 650 psi CO2. The decrease as a function of pressure was −0.173 °C/bar and did not change with the molecular architecture of PP. Both crystallization kinetics and melting behavior are evaluated.Since solubility and diffusivity are important thermodynamic parameters that establish the intrinsic gas transport characteristics in a polymer, solubility of CO2 in PP was measured using a high-pressure electrobalance and compared with cross-linked polyethylene. At 50 °C, solubility followed Henry’s law and at a pressure of 200 psi about 1% CO2 dissolved in PP. Similar solubility was achieved in PE at a pressure of 160 psi. Higher solubility of CO2 in PE is attributed to its lower crystallinity and lower Tg, than PP. Diffusion coefficients were calculated from the sorption kinetics using a Fickian transport model. Diffusivity was independent of pressure and PE showed higher diffusivity than PP. Preliminary foaming studies carried out using a batch process indicate that both PP and PE can be foamed from the solid state to form microcellular foams. Cell size and cell density were ∼10 μm and 108 cells/cm3, respectively in PE. Differences in morphology between the foams for these polymers are attributed to the differences in diffusivity.  相似文献   

2.
A gravimetric method for determining precisely the solubility of gases in polymers at high pressure is described. The solubilities of N2 and CO2 in low-density polyethylene (LDPE); CO2 in polycarbonate (PC); and N2, CH4, C2H6, and CO2 in polysulfone (PSUL) have been measured as a function of pressure up to 50 atm. Most of the measured sorption isotherms agreed closely with published data, but reproducible and time-dependent hysteresis in the sorption of CO2, C2H6, and CH4 in glassy polymers, PC, and PSUL, was observed in this study for the first time. Like the well known conditioning effect of high-pressure CO2 on the sorption capacity of glassy polymers, these hysteresis phenomena are believed to be due to the plasticizing effect of sorbed gases. On the basis of the current data, the dual-mode sorption model including the plasticization by sorbed gas is discussed and a primitive equation for the concentration of sorbed gases in a quasiequilibrium state of sorption or desorption is proposed.  相似文献   

3.
CO2-induced plasticization may significantly spoil the membrane performance in high-pressure CO2/CH4 separations. The polymer matrix swells upon sorption of CO2, which accelerates the permeation of CH4. The polymer membrane looses its selectivity. To make membranes attractive for, for example, natural gas upgrading, plasticization should be minimized. In this article we study a polymer membrane stabilization by a semiinterpenetrating polymer network (s-ipn) formation. For this purpose, the polyimide Matrimid 5218 is blended with the oligomer Thermid FA-700 and subsequently heat treated at 265°C. Homogeneous films are prepared with different Matrimid/Thermid ratios and different curing times. The stability of the modified membrane is tested with permeation experiments with pure CO2 as well as CO2/CH4 gas mixtures. The original membrane shows a minimum in its permeability vs. pressure curves, but the modified membranes do not indicating suppressed plasticization. Membrane performances for CO2/CH4 gas mixtures showed that the plasticizing effect indeed accelerates the permeation of methane. The modified membrane clearly shows suppression of the undesired methane acceleration. It was also found that just blending Matrimid and Thermid was not sufficient to suppress plasticization. The subsequent heat treatment that results in the s-ipn was necessary to obtain a stabilized permeability. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1547–1556, 1998  相似文献   

4.
Polyimide membranes derived from 6FDA-DAM:DABA and 6FDA-6FpDA:DABA copolymers have been used to separate 50/50 CO2/CH4 mixtures and multicomponent synthetic natural gas mixtures at 35 °C and feed pressures up to 55 atm. For 6FDA-DAM:DABA 2:1 membranes the effects of thermal annealing and covalent crosslinking are decoupled with respect to effects on permeabilities and selectivity. Crosslinking at 295 °C with 1,4-butylene glycol and 1,4-cyclohexanedimethanol increases CO2 permeabilities by factors of 4.1 and 2.4, respectively, at 20 atm feed pressure, without a loss in selectivity, relative to crosslinking at 220 °C. Thermal annealing and crosslinking also reduce CO2 plasticization effects. Crosslinking of DABA-containing copolymers, therefore, can produce membranes with tunable transport properties that offer significantly higher performance with better plasticization-resistance than that reported in the literature for the commercial polymers Matrimid® and cellulose acetate for CO2 removal from natural gas mixtures. Separation of complex mixtures containing CO2, CH4, C2H6, C3H8, and C4H10 or toluene results in a significant decrease of the CO2 permeability, but only a moderate decrease in the CO2/CH4 selectivity.  相似文献   

5.
Gas transport properties of semicrystalline films of poly(2,2,4,4-tetramethyl cyclobutane carbonate) (TMCBPC) were studied. Permeability coefficients for He, O2, N2, CH4, and CO2 at 35°C for pressures between 1 and 20 atm are reported as well as sorption isotherms for N2, CH4, and CO2 at the same conditions. The permeability coefficients for TMCBPC are larger than corresponding values for the aromatic bisphenol-A polycarbonate (PC) and tetramethyl bisphenol-A polycarbonate (TMPC), even though the TMCBPC films are semicrystalline. These results are explained on the basis of the larger free volume available for permeation in this polymer. Significant TMCBPC plasticization by CO2 was also observed and this causes typical time-dependent behavior. The plasticization process starts at very low pressures compared with the behavior of aromatic polycarbonates PC and TMPC. This early onset of plasticization seems to be related also to the larger free volume in the amorphous phase of TMCBPC which favors high gas sorption. The diffusion coefficients for TMCBPC are also larger than those reported for the aromatic polycarbonates PC and TMPC. Ideal gas separation factors were found to follow the usual trend; that is, as permeability increases, the ideal separation factor decreases. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
Permeability data are reported for carbon dioxide in Lexan polycarbonate at 35°C. Measurements were made for both pure carbon dioxide and for a mixed feed consisting of carbon dioxide with a 117.8-torr (0.155-atm) Partial pressure of isopentane. The effects of varying upstream CO2 driving pressure from 1 up to 20 atm were studied. The permeability to CO2 is reduced significantly in the presence of isopentane; however, the fractional depression of the CO2 permeability due to the isopentane at low driving pressures is much more significant than at high CO2 driving pressures. The well-known pressure dependence of carbon dioxide permeabilities in glassy polymers, therefore, is largely diminished by introducing isopentane to the pure carbon dioxide feed. These observations are consistent with a model for transport in glassy polymers which explains the observed trends in terms of competition between the two penetrants for microvoid sorption sites existing in the non-equilibrium glassy polymer. Exclusion of carbon dioxide from microvoid sorption sites by the more condensable isopentane preempts transport through the microvoid regions, resulting in the observed depression of the CO2 permeability.  相似文献   

7.
Gas permeation properties of poly(lactic acid)   总被引:2,自引:0,他引:2  
The need for the development of polymeric materials based on renewable resources has led to the development of poly(lactic acid) (PLA) which is being produced from a feedstock of corn rather than petroleum. The present study examines the permeation of nitrogen, oxygen, carbon dioxide, and methane in amorphous films of PLA cast from solution. The properties of PLA are compared to other commodity plastics and it is shown that PLA permeation closely resembles that of polystyrene. At 30°C, N2 permeation in PLA is 1.3 (10−10 cm3 (STP) cm/cm2 s cmHg) and the activation energy is 11.2 kJ/mol. For oxygen the corresponding values are 3.3 (10−10 cm3(STP) cm/cm2 s cm Hg) and 11.1 kJ/mol. The values for carbon dioxide permeation are 1.2 (10−10 cm3 (STP) cm/cm2 s cmHg) and 6.1 kJ/mol. For methane values of 1.0 (10−10 cm3 (STP) cm/cm2 s cmHg) and an activation energy of 13.0 kJ/mol are found. Studies with pure gases show that polymer chain branching and small changes in l:d stereochemical content have no effect on permeation properties. Crystallinity is found to dominate permeation properties in a biaxially oriented film. The separation factor for a CO2/CH4 mixed gas system is measured between 0 and 50°C and does not deviate significantly from the calculated ideal separation factor; at 0°C the separation factor is 16, a value that suggests continued studies of PLA as a separation medium are warranted.  相似文献   

8.
Equilibrium gas sorption measurements for CO2, CH4, and N2 were made with three polymers based on bisphenol-A, namely a polyhydroxyether, a polyetherimide, and a polyarylate. These data plus previous results for two other bisphenol-A polymers, polycarhonate and polysulfone, were analyzed using the dual-mode sorption model and the more recent gas-polymer-matrix model. The models were compared on the basis of physical interpretations of the resulting parameters. The Langmuir capacity from the dual-model model was related to the unrelaxed volume of the glassy polymer. The Henry's law sorption parameter from the dual-mode model was related to the internal pressure of the polymer and to its tensile stress at yield. The work suggests a means for estimation of gas sorption levels from thermal and mechanical properties of the polymer.  相似文献   

9.
Sorption kinetics and equilibria as well as permeabilities and diffusion time lags for CO2 in Kapton polyimide film have been studied at temperatures from 35 to 55°C and pressures up to 0.78 atm. The sorption/desorption cycles indicate that the diffusivity of CO2 increases with increasing local penetrant concentration in the polymer. Both the permeability and time lag decrease with increasing upstream CO2 pressure. All of these results are described well by theoretical expression based on the dual-mode theory of sorption and transport in glassy polymers.  相似文献   

10.
Teflon AF 2400 (Du Pont) is an amorphous, glassy perfluorinated copolymer containing 87 mol% 2,2-bistrifluoromethyl-4,5-difluoro-1,3-dioxole and 13 mol% tetrafluoroethylene. The polymer has an extremely high fractional free volume of 0.327. Permeability coefficients for helium, hydrogen, carbon dioxide, oxygen, nitrogen, methane, ethane, propane, and chlorodifluoromethane (Freon 22) were determined at temperatures from 25 to 60°C and pressures from 20 to 120 psig. Permeation properties were also determined at a feed pressure of 200 psig at 25°C with a 2 mol% n-butane/98 mol% methane mixture. Permeabilities of permanent gases in Teflon AF 2400 are among the highest of all known polymers; the oxygen permeability coefficient at 25°C is 1600 × 10−10 cm3 (STP) cm/cm2 s cmHg and the nitrogen permeability coefficient is 780 × 10−10 cm3 (STP) cm/cm2 s cmHg. The permeabilities of organic vapors increase up to 20-fold as the vapor activity increases from 0.1 to unity, indicating that Teflon AF 2400 is easily plasticized. Although Teflon AF 2400 is an ultrahigh-free-volume polymer like poly(1-trimethylsilyl-1-propyne) [PTMSP], their gas permeation properties differ significantly. Teflon AF 2400 shows gas transport behavior similar to that of conventional, low-free-volume glassy polymers. PTMSP, on the other hand, acts more like a nanoporous carbon than a conventional glassy polymer.  相似文献   

11.
Steady-state permeation rates for pure CO2 and CH4 and their binary mixtures through homogeneous dense cellulose triacetate membranes have been measured at three temperatures between 20 and 40°C and pressures up to 2.8 MPa. The pressure dependence of the mean permeability coefficient for CO2 can be described by the total immobilization model in conjunction with a modified free-volume model. No appreciable pressure dependence of the permeability coefficient for CH4 is observed, while the permeability coefficients for CH4 in binary mixture of CO2 and CH4 depend on applied gas pressure. The pressure dependences of the mean permeability coefficients for the components in the binary mixture are discussed in terms of the above mobility model. Membrane plasticization induced by CO2 affects permeation by both gases.  相似文献   

12.
Asymmetric hollow fiber membranes were prepared using the polyimide Matrimid® 5218. The fibers had an effective top layer thickness of 0.3–0.4 μm. The fibers were used in propane and propylene permeation experiments. Whereas the propane permeance remained more or less constant, the propylene permeance increased with feed pressure greater than 1 bar. This indicated that propylene plasticized the membrane material.The fibers were given different heat-treatments in order to investigate the possibilities to suppress the propylene plasticization. This treatment also reduced the permeance considerably, the effect being more pronounced the more intense the heat-treatment was. This was in agreement with scanning electron microscopy studies, which revealed that densification of the fibers occurred due to the heat-treatments. Most important, relatively mild heat-treatments already appeared to be effective in suppressing the propylene plasticization. Since these heat-treated fibers still readily dissolved it is concluded that the plasticization suppression was not due to crosslinking, but to an annealing effect. Due to thermal curing (annealing) at temperatures below the Tg aromatic polyimides tend to form charge transfer complexes, which restrict the polymer chain mobility. Presence of these complexes seems to be responsible for suppression of propylene plasticization.  相似文献   

13.
A model is presented for analysis of the sorption of mixed gases in glassy polymers at concentrations below which significant plasticization occurs. The well-known dual-mode sorption model comprised of a Henry's law term and a Langmuir isotherm term, which has been used extensively for interpretation of single-component gas sorption data, forms the basis for the analysis of binary mixtures discussed here. Measurements using pure gases provide dual mode parameters which can then be used to predict the resultant sorption isotherms for binary mixtures of any of the pure gases. The proposed analysis is based upon recognition that the Langmuir component of the overall sorption concentration should be governed by competition between the two penetrants for the fixed unrelaxed volume in the polymer, which is believed to be the locus of the Langmuir capacity. This effect may result in a significant depression of the measured sorption of similar penetrants competing for the limited Langmuir capacity. A numerical example is considered which illustrates the range of behavior expected for CO2 and CH4 in polycarbonate. Deviations from the theoretical predictions of the simple dual-mode model for binary systems are discussed in terms of plasticizing effects on the Henry's law constant and the Langmuir affinity constant. The analyses proposed here are of direct and critical interest to the applied problems of migration of trace contaminants in glassy polymers and analysis of barrier packaging for foods since all of these applied problems involve mixed-penetrant sorption. Specifically, it is predicted that the presence of residual monomers or solvents in glassy polymers can produce both anomolously low Langmuir sorption affinity constants and sorption enthalpies compared with the residual-free case.  相似文献   

14.
Experimental data on gas sorption and polymer swelling in glassy polymer—gas systems at elevated pressures are presented for CO2 with polycarbonate, poly(methyl methacrylate), and polystyrene over a range of temperatures from 33 to 65°C and pressures up to 100 atm. The swelling and sorption behavior were found to depend on the occurrence of a glass transition for the polymer induced by the sorption of CO2. Two distinct types of swelling and sorption isotherms were measured. One isotherm is characterized by swelling and sorption that reach limiting values at elevated pressures. The other isotherm is characterized by swelling and sorption that continue to increase with pressure and a pressure effect on swelling that is somewhat greater than the effect of pressure on sorption. Glass transition pressures estimated from the experimental results for polystyrene with CO2 are used to obtain the relationship between CO2 solubility and the glass transition temperature for the polymer. This relationship is in very good agreement with a theoretical corresponding-states correlation for glass transition temperatures of polystyrene-liquid diluent mixtures.  相似文献   

15.
Data for CO2 permeability through Kapton polyimide at 60°C are reported for upstream pressures up to 240 psia (16.33 atm) in the presence and absence of water vapor in the feed. The carbon dioxide flux was depressed by the presence of the water vapor. This phenomenon is analyzed in terms of the dual mode sorption and transport models. Together with other recent sorption and permeation data, this study suggests that competition of mixed penetrants for sorption sites and transport pathways associated with unrelaxed volume in glassy polymers is a general feature of gas/glassy polymer systems. The permselectivity of a membrane to a mixture of penetrants is strongly related to its ability to maintain a size and shape differentiating matrix, that is, to remain essentially unplasticized under operating conditions. Under such conditions, competition among penetrants for excess volume will be a generally important consideration for modeling gas permeation in permselective membranes.  相似文献   

16.
The gas‐transport properties of poly[2,6‐toluene‐2,2‐bis(3,4‐dicarboxylphenyl)hexafluoropropane diimide] (6FDA‐2,6‐DAT) have been investigated. The sorption behavior of dense 6FDA‐2,6‐DAT membranes is well described by the dual‐mode sorption model and has certain relationships with the critical temperatures of the penetrants. The solubility coefficient decreases with an increase in either the pressure or temperature. The temperature dependence of the diffusivity coefficient increases with an increase in the penetrant size, as the order of the activation energy for the diffusion jump is CH4 > N2 > O2 > CO2. Also, the average diffusion coefficient increases with increasing pressure for all the gases tested. As a combined contribution from sorption and diffusion, permeability decreases with increases in the pressure and the kinetic diameter of the penetrant molecules. Even up to 32.7 atm, no plasticization phenomenon can be observed on flat dense 6FDA‐2,6‐DAT membranes from their permeability–pressure curves. However, just as for other gases, the absolute value of the heat of sorption of CO2 decreases with increasing pressure at a low‐pressure range, but the trend changes when the feed pressure is greater than 10 atm. This implies that CO2‐induced plasticization may occur and reduce the positive enthalpy required to create a site into which a penetrant can be sorbed. Therefore, a better diagnosis of the inherent threshold pressure for the plasticization of a glassy polymer membrane may involve examining the absolute value of the heat of sorption as a function of pressure and identifying the turning point at which the gradient of the absolute value of the heat of sorption against pressure turns from a negative value to a positive one. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 354–364, 2004  相似文献   

17.
We have determined the intrinsic gas transport properties of He, H2, O2, N2, CH4, and CO2 for a 6FDA-durene polyimide as a function of pressure, temperature and aging time. The permeability coefficients of O2, N2, CH4, and CO2 decrease slightly with increasing pressure. The pressure-dependent diffusion coefficients and solubility coefficients are consistent with the dual-sorption model and partial immobilization. All the gas permeabilities increase with temperature and their apparent activation energies for permeation increase with increasing gas molecular sizes in the order of CO2, O2, N2, and CH4.The percentages of permeability decay after 280 days of aging are 22, 32, 36, 40, 42, and 30% for He, H2, O2, N2, CH4, and CO2, respectively. Interestingly, except for H2 (kinetic diameter of 2.89 Å), the percentages of permeability decay increase exactly in the order of He (kinetic diameter of 2.6 Å), CO2 (3.30 Å), O2 (3.46 Å), N2 (3.64 Å), and CH4 (3.80 Å). The apparent activation energies of permeation for O2, N2, CH4, and CO2 increase with aging because of the increases in activation energies of diffusion and the decreases in solubility coefficients. The activation-energy increase for diffusion is probably due to the decrease in polymeric molar volume because of densification during aging. The reduction in solubility coefficient indicates the available sites for sorption decreasing with aging because of the reduction of microvoids and interstitial chain space.  相似文献   

18.
Sorption isotherms for pure CO2 and pure CH4 in Kapton H® polymide films at 60°C are reported for pressures up to 20 atm and are analyzed in terms of the dual-mode sorption model. An experimental scheme for the measurement of steady-state permeabilities of both pure and mixed gas feeds is described. Permeabilities of Kapton to the individual components at 60°C are presented for a mixture comprised of 32.2% CO2 in CH4 as functions of feed pressure up to 590 psi (absolute). The permeabilities for the individual penetrants in the mixed feed are lower than the respective purecomponent values at the corresponding partial pressures. Furthermore, the permeabilities of both penetrants drop as the feed pressure is increased at constant composition. The dual-mobility transport model used to analyze the data postulates that the observed pressure and composition dependence of the permeabilities is due to competition between penetrants for a limited microvoid sorption capacity in the glassy polymer. It is demonstrated that in addition to flux depressions due to dual-mode effects, nonideality of the gas phase must be accounted for to explain the substantial flux depressions observed for the CO2/CH4 mixtured used in this study.  相似文献   

19.
The transport properties of silicone rubber are reported at 35°C for a series of pure gases (He, N2, CH4, CO2, and C2H4) and gas mixtures (CO2/CH4 and N2/CO2) for pressures up to 60 atm. The effects of pressure and concentration on the permeability of various gases have been analyzed to consider plasticization and hydrostatic compression effects. Over an extended pressure and concentration range, both compression of free volume and eventual plasticization phenomena were observed for the various penetrants. In pure component studies, plasticization effects tended to dominate hydrostatic compression effects for the more condensible penetrants (C2H4 and CO2) while the reverse was true for the low sorbing N2 and He. These issues are discussed in terms of penetrant diffusion coefficients versus pressure to clarify the interplay between the opposing effects for the penetrants of markedly different solubilities. Additional insight into the somewhat complex interplay of the plasticization and hydrostatic compression effects are given by mixed gas permeation results. It was found that the permeability of nitrogen in a 10/90 CO2/N2 and a 50/50 CO2/N2 mixture was increased by the presence of CO2 because the plasticizing nature of CO2 is able to overcome nitrogen's compression effect.  相似文献   

20.
Sorption of N2, O2, Ar, CH4, CO2, C2H4, and C2H6 in poly (dimethyl siloxane) liquid and rubber and the dilation of the polymers due to sorption of the gases are studied at 25°C under pressures up to 50 atm. In the liquid, the sorption isotherms for low-solubility and high-solubility gases are described by Henry's law and the Flory–Huggins equation, respectively. Gas sorption in the rubber, which contains a 29 wt % silica filler, follows the dual-mode sorption model, though marked hysteresis is observed in the sorption of O2 and CH4. The dilation isotherms increase linearly or exponentially in both polymers with increasing pressure. Considering that gas molecules adsorbed into micropores of the filler particles do not participate in the dilation, partial molar volumes of the dissolved gases in the rubber are determined from data of sorption and dilation. The values are nearly equal to the partial molar volumes in the liquid (48–60 cm3/mol).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号