首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report for the first time the tip‐enhancement of resonance Raman scattering using deep ultraviolet (DUV) excitation wavelength. The tip‐enhancement was successfully demonstrated with an aluminum‐coated silicon tip that acts as a plasmonic material in DUV wavelengths. Both the crystal violet and adenine molecules, which were used as test samples, show electronic resonance at the 266‐nm excitation used in the experiments. With results demonstrated here, molecular analysis and imaging with nanoscale spatial resolution in DUV resonance Raman spectroscopy can be realized using the tip‐enhancement effect. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
本文从拉曼峰强出发,求得了反-2,3-环氧丁烷分子的拉曼键极化率,明确了拉曼激发下电荷的分布的信息.还从旋光拉曼(Raman optical activity,ROA)谱的峰强,求取了该分子的旋光拉曼键极化率.由分子手性中心的C-H产生的偶极矩与拉曼激发过程中,电荷流动产生的跃迁磁偶极矩的耦合,来理解旋光拉曼活性产生的机理.分析表明,旋光拉曼活性分子手性中心的C-H键两侧的旋光拉曼极化率符号相反,显示着手性分子局域的不对称性.还得到了对称和反对称坐标的键极化率和旋光拉曼极化率,并且从对称性的角度,即C2群的不可约表示,讨论了这些极化率的内涵.  相似文献   

3.
Vibrational bands of L ‐tryptophan which was adsorbed on Ag nanoparticles (∼10 nm in diameter) have been investigated in the spectral range of 200–1700 cm−1 using surface‐enhanced Raman scattering (SERS) spectroscopy. Compared with the normal Raman scattering (NRS) of L ‐tryptophan in either 0.5 M aqueous solution (NRS‐AS) or solid powder (NRS‐SP), the intensified signals by SERS have made the SERS investigation at a lower molecular concentration (5 × 10−4 M ) possible. Ab initio calculations at the B3LYP/6‐311G level have been carried out to predict the optimal structure and vibrational wavenumbers for the zwitterionic form of L ‐tryptophan. Facilitated with the theoretical prediction, the observed vibrational modes of L ‐tryptophan in the NRS‐AS, NRS‐SP, and SERS spectra have been analyzed. In the spectroscopic observations, there are no significant changes for the vibrational bands of the indole ring in either NRS‐AS, NRS‐SP, or SERS. In contrast, spectral intensities involving the vibrations of carboxylate and amino groups are weak in NRS‐AS and NRS‐SP, but strong in SERS. The intensity enhancement in the SERS spectrum can reach 103–104‐fold magnification. On the basis of spectroscopic analysis, the carboxylate and amino groups of L ‐tryptophan are determined to be the preferential terminal groups to attach onto the surfaces of Ag nanoparticles in the SERS measurement. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Thiacloprid is a widely used pesticide belonging to the neonicotinoid class, which is characterized by a selective activity against insects and a reduced acute toxicity for humans. The importance of the environmental impact of neonicotinoids is being intensively researched, in order to evaluate the danger they pose for useful insects. Physical methods which allow the characterization of neonicotinoids in diluted aqueous solutions are therefore desirable. We present a study of Raman and surface‐enhanced Raman scattering (SERS) spectroscopy on thiacloprid in solid state, in acetone solution, and adsorbed onto silver and gold hydrosols at μM concentration. Density functional theory calculations allow the individualization of the most stable molecular structure, both in gas phase and in solution, and of the corresponding Raman spectra. The vibrational assignments lead to an interpretation of the differences between SERS and ordinary Raman spectra based on the possible interactions between the molecule and the metal surface, the main one involving the iminocyano group. Formation of a charge‐transfer complex is suggested by the dependence of the SERS spectra on the laser excitation wavelength. We evaluate the applicability of SERS spectroscopy to the chemical analysis of thiacloprid comparing SERS with current analytical methods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
We achieved single‐molecule surface‐enhanced Raman scattering (SM‐SERS) spectra from ultralow concentrations (10−15 M) of fullerene C60 on uniformly assembled Au nanoparticles. It was found that resonant excitation at 785 nm is a powerful tool to probe SM‐SERS in this system. The appearance of additional bands and splitting of some vibrational modes were observed because of the symmetry reduction of the adsorbed molecule and a relaxation in the surface selection rules. Time‐evolved spectral fluctuation and ‘hot spot’ dependence in the SM‐SERS spectra were demonstrated to result from the single‐molecule Raman behavior of the spherical C60 on Au nanoparticles. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The molecular interaction in the binary mixture of 3‐phenoxybenzaldhyde (3Phbz) and 4‐ethoxybenzaldehyde (4Etob) was analysed in four different solvents. The concentration dependence of vibrational relaxation of the CO stretching band of 3Phbz in different solvents was investigated by varying the concentration of the solute molecule in the solvents by performing Raman spectroscopic measurements. The self‐associated nature and the formation of hydrogen‐bonded complexes in the solute molecule, 4Etob, were considered to analyse the wavenumber separation between the peaks of hydrogen‐bonded and free carbonyl groups. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The ability of normal Raman and surface‐enhanced Raman scattering (SERS) to identify and detect bacteria has shown great success in recent studies. The addition of silver nanoparticles to bacterial samples not only results in an enhanced Raman signal, but it also suppresses the native fluorescence associated with biological material. In this report, Raman chemical imaging (RCI) was used to analyze individual bacteria and complex mixtures of spores and vegetative cells. RCI uses every pixel or a binned pixel group (BPG) of the Raman camera as an independent Raman spectrograph, allowing collection of spatially resolved Raman spectra. The advantage of this technique resides primarily in the analysis of samples in complex backgrounds without the need for physically isolating or purifying the sample. Using a chemical imaging Raman microscope, we compare normal RCI to SERS‐assisted chemical imaging of mixtures of bacteria. In both cases, we are able to differentiate single bacterium in the Raman microscope's field of view, with a 60‐fold reduction in image acquisition time and a factor of 10 increase in the signal‐to‐noise ratio for SERS chemical imaging over normal RCI. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The spatial resolution in optical imaging is restricted by so‐called diffraction limit, which prevents it to be better than about half of the wavelength of the probing light. Tip‐enhanced Raman spectroscopy (TERS), which is based on the SPP‐induced plasmonic enhancement and confinement of light near a metallic nanostructure, can however, overcome this barrier and produce optical images far beyond the diffraction limit. Here in this article, the basic phenomenon involved in TERS is reviewed, and the high spatial resolution achieved in optical imaging through this technique is discussed. Further, it is shown that when TERS is combined with some other physical phenomena, the spatial resolution can be dramatically improved. Particularly, by including tip‐applied extremely localized pressure in TERS process, it has been demonstrated that a spatial resolution as high as 4 nm could be achieved.  相似文献   

9.
Surface‐enhanced Raman spectroscopy (SERS) is rapidly growing as an analytical technique for the detection of extremely low concentrations of analytes. The analysis of natural resins from artworks is often restricted by sample size constraints in general, and Raman spectroscopy in particular is hampered by fluorescence when using visible irradiation wavelengths. This work demonstrates that SERS is able to overcome interference from fluorescence in such samples using the incident wavelength 514.5 nm, to allow collection of SERS spectra from extremely small samples. Characterisation of the natural resin surface coating from a painting by Tiepolo is discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Surface‐enhanced Raman scattering (SERS) spectra are presented and analyzed for two important organophosphate pesticides, dimethoate (DMT) and omethoate (OMT). Very detailed SERS spectra were obtained by aggregated Ag hydrosols, both in aqueous suspension and dried on a glass substrate. The SERS and ordinary Raman spectra of DMT do not resemble each other, suggesting that a chemical reaction immediately occurs when DMT is adsorbed onto the metal surface. We propose that the reaction product is OMT, which is the oxygen analog of DMT, on the basis of the Raman and SERS spectra of OMT. Further support is derived from the calculated Raman spectra of DMT and OMT. Minor wavenumber and intensity differences that are observed between the SERS spectra of DMT reaction product and those of OMT could be related to different metal/adsorbate interaction modes. The results can be useful in the development of new analytical methods for the determination of pesticide residues in food. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The detection of explosives and their associated compounds for security screening is an active area of research and a wide variety of detection methods are involved in this very challenging area. Surface‐enhanced Raman scattering (SERS) spectroscopy is one of the most sensitive tools for the detection of molecules adsorbed on nano‐scale roughened metal surface. Moreover, SERS combines high sensitivity with the observation of vibrational spectra of species, giving complete information on the molecular structure of material under study. In this paper, SERS was applied to the detection of very small quantities of explosives adsorbed on industrially made substrates. The spectra were acquired with a compact Raman spectrometer. Usually, a high signal‐to‐noise (S/N) spectrum, suitable for identification of explosive molecules down to few hundreds of picograms, was achieved within 30 s. Our measurements suggest that it is possible to exploit SERS using a practical detection instrument for routine analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
An algorithm is employed to retrieve the differential bond polarizabilities (DBP) of the C‐C bonds from the Raman optical activity spectrum of (‐)β‐pinene. (‐)β‐pinene possesses two stereo centers (chiral centers) and a local mirror reflection that interchanges the S type part and R type part in one molecular. It is demonstrated that this local mirror reflection could induce an approximate (or symmetry breaking) mirror reflection that reverses the signs of the DBP of the pair bond coordinates that are related to each other by the mirror reflection.This can be called intramolecular enantiomerism (IE). More cases of IE are discussed by the analysis of (‐)α‐pinene, (R)‐(+)‐4‐isopropyl‐1‐methylcyclohexene and (R)‐(+)‐3‐methylcyclohexanone together with previously studied limonene case. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Temporal Raman scattering measurements with 488, 532 and 632 nm excitation wavelengths and normal Raman studies by varying the power (from 30 W/cm2 to 2 MW/cm2) at 488 nm were performed on silver oxide thin films prepared by pulsed‐laser deposition. Initially, silver oxide Raman spectra were observed with all three excitation wavelengths. With further increase in time and power, silver oxide photodissociated into silver nanostructures. High‐intensity spectral lines were observed at 1336 ± 25 and 1596 ± 10 cm−1 with 488 nm excitation. No spectral features were observed with 633 nm excitation. Surface‐enhanced resonance Raman scattering theory is used to explain the complex behavior in the intensity of the 1336/1596 cm−1 lines with varying power of 488 nm excitation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
A new circularly polarized (CP) Raman spectrometer is described that demonstrates simultaneous acquisition of all four forms of circular polarization Raman optical activity (ROA). The instrument is a design extension of a commercially available back scattering circular polarization (SCP) ROA spectrometer. Circular polarization of the incident beam is introduced with a quarter‐wave plate, and a half‐wave plate alternately positioned in and out of the beam controls the modulation between right circular polarization (RCP) or left circular polarization (LCP) states. Combining this modulation with the simultaneous detection of RCP and LCP scattered Raman radiation allows the measurement of incident circular polarization (ICP), SCP, in‐phase dual circular polarization(DCPI) and out‐of‐phase DCPII‐ROA. In addition, three different forms of backscattered Raman spectra, namely unpolarized, highly polarized, and depolarized Raman spectra, as well as a degree of circularity spectrum are obtained. The performance of the new all‐CP ROA spectrometer is evaluated with neat α‐pinene and aqueous hen lysozyme solution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
We have constructed an ultraviolet (UV)‐apertureless near‐field scanning optical microscope‐Raman spectroscopy system by using an aluminum tip for the simultaneous measurement of topography and Raman scattering of nanomaterials with high spatial resolution. The topography, Rayleigh scattering image, and tip‐enhanced Raman scattering image of the carbon nanotube film showed that a spatial resolution of around 19 nm was achieved. This spatial resolution of UV‐Raman mapping image exceeds that of previous approaches, which have several hundred nanometers of spatial resolution. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Raman spectroscopy based on the 1064‐nm laser excitation was suggested as a handy non‐invasive technique allowing to quickly determine sugar content in honey and similar food products. In the present study, the green 532‐nm laser radiation is explored instead as it provides higher‐quality spectra in a shorter time. The sample fluorescence was quenched by purification with activated carbon. For control mixture decomposition of Raman spectra to standard subspectra led to a typical error of the sugar content of 3%. Raman optical activity (ROA) spectra that could be measured at the shorter excitation wavelength as well provided a lower accuracy (~8%) than the Raman spectra because of instrumental sensitivity and noise limitations. The results show that Raman spectroscopy provides elegant and reliable means for fast analyses of sugar‐based food products. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
We report surface enhanced Raman spectroscopy (SERS) of Darling–Dennison resonance of thiourea on Ag electrode excited at 514.5 nm laser excitation. Darling–Dennison resonance indicates that two degenerate Raman modes interact with each other and their degenerate first‐order overtone modes obtain energy and appear in Raman spectra. Our study showed that the ratio of intensity of the Darling–Dennison resonance is up to 0.24 of its fundamental Raman intensity, when the applied electrode voltage is at –0.4 V versus the saturated calomel electrode. This phenomenon was also observed on the Ag island film surface at ambient condition. These observations demonstrated strong evidence for Darling–Dennison resonance band in SERS. The implications of these observations are also discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
We report a novel post‐growth microwave treatment approach to selectively modify the surface morphologies of gold (Au) films coated on the polystyrene (PS) bead substrates for effectively improving the surface‐enhanced Raman scattering (SERS) effect on the analytes. The discrete dipole approximation (DDA) model was introduced to evaluate the enhancement effects by calculating the localized electromagnetic field distribution and extinction efficiency based on the sizes of the trenches and voids, and the surface roughness of the modified Au–PS bead substrates. The SERS performance of microwave‐modified Au–PS substrates on rhodamine 6G (Rh 6G) and saliva yields at least 10‐fold improvements in SERS intensities compared to the as‐grown substrates, which is also in agreement with theoretical predictions by DDA modeling. This work demonstrates both experimentally and theoretically the efficacy of the microwave heating treatment on modifying the Au–PS bead substrates for the realization of high SERS performance in biomedical applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Polarized Raman spectroscopy was used to investigate the room‐temperature phonon characteristics of a series of rare‐earth arsenate (REAsO4, RE = Sm, Eu, Gd, Tb, Dy, Ho, Tm, Yb, and Lu) single crystals. The Raman data were interpreted in a systematic manner based on the known tetragonal zircon structure of these compounds, and assignments and correlations were made for the observed bands. We found that the wavenumbers of the internal modes of the AsO4 tetrahedron increased with increasing atomic number. This increase seems to be correlated to the contraction of the RE–O bond length. For three out of four lattice wavenumbers observed, this tendency was not nearly so marked as in the case of the internal mode wavenumber. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
We studied the bond polarizabilities of chiral (+)‐(R)‐methyloxirane from its Raman intensities. The bond polarizabilities provide much information concerning the electronic structure of its nonresonant Raman‐excited virtual state. At the initial moment of Raman excitation by the 514.5 nm laser, the tendency of the excited charges (mapped out by the bond polarizabilities) is to spread to the methine bond near the stereogenic center and its triangular oxirane skeleton. Thereby, the coupling of the electric dipole induced by the excited charges in the methine bond and the magnetic moment vibrationally induced by the electric current in the triangular oxirane skeleton as the molecule vibrates is shown to be the key factor leading to its significant Raman chirality. When the final stage of Raman relaxation is approached, the relative magnitudes of the bond polarizabilities are congruent to the bond electronic densities of the ground state, which are otherwise by the theoretical quantities via the quantum chemical calculation. During Raman relaxation, we found that the polarizabilities of the peripheral C H bonds relax faster than the rest, as indicated by their relaxation characteristic times. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号