首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, the pervaporation performance and mechanism of water-ethanol mixtures through symmetric and asymmetric TPX [poly(4-methyl-1-pentene)] membranes were investigated. The results show that TPX is a highly water permselective material although it is strongly hydrophobic. It was found that, for a symmetric dense TPX membrane, the feed solution vaporizes first and then permeates through the membrane. The water selectivity stems from the huge difference in diffusivity between water and ethanol vapors. To improve the permeation flux, asymmetric TPX membranes were prepared by a wet inversion method. However, due to the swelling effect of ethanol on TPX, small pores occur when the dense skin contacts the feed solution, resulting in a loss of water selectivity. Stain experiments were carried out to verify this mechanism. In addition, it was found that a parallel model can describe the mechanism quite accurately. Good agreement between the theoretical calculation and experimental measurement has been obtained. Furthermore, we also found that the loss of selectivity can be avoided by turning the asymmetric membrane over; that is, let the dense skin face the permeate.  相似文献   

2.
3.
Novel temperature-sensitive membranes have been synthesized by grafting poly(N-isopropyacrylamide) (poly(NIPAAm)) onto a poly(vinyl alcohol) (PVA) backbone using hydrogen peroxide-ferrous ion as initiator. Due to the grafting of poly(NIPAAm), the hydrophilic/hydrophobic balance and the polarity of the pendent groups within the membranes are modified. Significant temperature sensitivity of the grafted membranes is observed close to the LCST of linear poly(NIPAAm) in the pervaporation processes for ethanol-water separation. Both the pervaporation and sorption selectivities for water show a maximum value in the vicinity of 30–32°C for an ethanol content of 75 and 80%. The temperature sensitivity of the grafted membranes also depends on the ethanol concentration. The maxima of pervaporation and sorption selectivities disappear when the ethanol content is lower than 75% because the much larger degree of swelling reduces the size screening effect of the membranes.  相似文献   

4.
Composite membranes were prepared by plasma-induced graft polymerization of vinyl monomers onto porous substrates of high density polyethylene, and the relationship between the polymerization conditions and morphological structure and pervaporation performance toward benzene/cyclohexane mixtures was investigated in detail. The morphological structures of the plasma-grafted membranes depended on the monomer reactivity, plasma treatment manner, and graft polymerization conditions. Pervaporation properties were closely related to the graft monomers and the morphological structures. The poly(glycidyl methacrylate)-grafted membranes prepared by homogeneous both sides plasma treatment and under mild polymerization conditions showed the highest pervaporation performance with a permeation flux of 0.3 kg/(m2 h) and separation factor of 22 at 60 wt % benzene and 70°C. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2247–2259, 1998  相似文献   

5.
Poly(vinyl alcohol) (PVA) membranes crosslinked with glutaraldehyde (GA) were prepared by a solution method for the pervaporation separation of acetic acid-water mixtures. In the solution method, dry PVA films were crosslinked by immersion for 2 days at 40°C in reaction solutions which contained different contents of GA, acetone and a catalyst, HCl. In order to fabricate the crosslinked PVA membranes which were stable in aqueous solutions, acetone was used as reaction medium in stead of aqueous inorganic salt solutions which have been commonly used in reaction solution for PVA crosslinking reaction. The crosslinking reaction between the hydroxyl group of PVA and the aldehyde group of GA was characterized by IR spectroscopy. Swelling measurements were carried out in both water and acetic acid to investigate the swelling behavior of the membranes. The swelling behaviour of a membrane fabricated at different GA content in a reaction solution was dependent on crosslinking density and chemical functional groups created as a result of the reaction between PVA and GA, such as the acetal group, ether linkage and unreacted pendent aldehydes in PVA. The pervaporation separation of acetic acid-water mixtures was performed over a range of 70–90 wt% acetic acid in the feed at temperatures varying from 35 to 50°C to examine the separation performances of the PVA membranes. Permeation behaviour through the membranes was analyzed by using pervaporation activation energies which had been calculated from the Arrhenius plots of permeation rates.  相似文献   

6.
李继定 《高分子科学》2010,28(4):625-635
<正>Ultra-fine silicalite-1 particles were modified with four kinds of chlorosilanes(dodecyltrichlorosilane, octyltrichlorosilane,hexadecyltrichlorosilane and octadecyltrichlorosilane) and characterized by FI-IR,TGA,contact angle measurements and BET analysis.It was found that the surface hydrophobicity of silicalite-1 particles was improved significantly as the alkyl group was strongly bonded to the particle surface.Modified silicalite-1 particles were incorporated into PDMS(poly(dimethylsiloxanediol)) membranes,which were applied for the pervaporation separation of ethanol/water mixtures.The effect of surface properties,zeolite loading and operation conditions on pervaporation performance of the membranes was investigated.The separation factor of PDMS membranes filled with modified silicalite-1 increased considerably compared with that filled with unmodified ones,and the total flux decreased with increasing zeolite loading. The solution and diffusion selectivity of hybrid membranes were also measured to explain the pervaporation properties of silicalite-1 filled PDMS membranes.It was found that modification of silicalite-1 with dodecyltrichlorosilane effectively improved the solution and diffusion selectivity of silicalite-1 filled PDMS membranes with high zeolite loading.This may be attributed to the high surface hydrophobicity of modified silicalite-1 and its good integration with PDMS membranes.Both the high separation factor and solution selectivity indicated that modification of silicalite-1 with chlorosilanes was an effective method to improve the selectivity of silicalite-1/PDMS hybrid membranes for ethanol.  相似文献   

7.
Composite pervaporation membranes composed of an asymmetric polyamide-6 membrane and an ultrathin self-assembled polyelectrolyte separating layer are described. The supporting membrane was prepared from both an unmodified polyamide-6 and a comb-like polymer with carboxyl terminated polyamide-6 side chains. A high end group concentration was found to be advantageous for sufficient adhesion of the multilayer systems on the supports. Up to 20 layers were deposited onto the membrane surface by dipping the membranes in aqueous solutions containing oppositely charged polyelectrolytes. The polyanions used were poly(acrylic acid), poly(styrene sulfonic acid) and alginic acid. The polycations used were poly(diallyldimethylammoniumchloride), chitosan and poly(ethylenimine). Performance of these membranes depends strongly on the layer number and on the type of polyelectrolytes. In general, membranes modified with two weak polyelectrolytes of high charge density gave the best separation properties while those modified with strong polyelectrolytes of low charge density led to poorer separation properties. However, the highest separation factor (≥10,000) for a water/2-propanol mixture (12/88 w/w) at permeate flux of 300 g/m2h was obtained with six double layers consisting of poly(ethylenimine) and alginic acid. These composite membranes were stable over an operating period of at least 400 h.  相似文献   

8.
Gasoline desulfurization by membrane processes is a newly emerged technology, which has provided an efficient new approach for sulfur removal and gained increasing attention of the membrane and petrochemical field. A deep understanding of the solution/diffusion of gasoline molecules on/in the membrane can provide helpful information in improving or optimizing membrane performance. In this study, a desulfurization mechanism of polyethylene glycol (PEG) membranes has been investigated by the study of sorption and diffusion behavior of typical sulfur and hydrocarbon species through PEG membranes. A solution–diffusion model based on UNIFAC and free volume theory has been established. Pervaporation (PV) and sorption experiments were conducted to compare with the model calculation results and to analyze the mass transport behavior. The dynamic sorption curves for pure components and the sorption experiments for binary mixtures showed that thiophene, which had a higher solubility coefficient than n-heptane, was the preferential sorption component, which is key in the separation of thiophene/hydrocarbon mixtures. In all cases, the model calculation results fit well the experimental data. The UNIFAC model was a sound way to predict the solubility of solvents in membranes. The established model can predict the removal of thiophene species from hydrocarbon compounds by PEG membranes effectively.  相似文献   

9.
Hybrid membranes were prepared using poly(vinyl alcohol) (PVA) and tetraethylorthosilicate (TEOS) via hydrolysis followed by condensation. The obtained membranes were characterized by Fourier transform infrared spectroscopy, wide-angle X-ray diffraction and differential scanning calorimetry. The remarkable decrease in degree of swelling was observed with increasing TEOS content in membranes and is attributed to the formation of hydrogen and covalent bonds in the membrane matrix. The pervaporation performance of these membranes for the separation of water–acetic acid mixtures was investigated in terms of feed concentration and the content of TEOS used as crosslinking agent. The membrane containing 1:2 mass ratio of PVA and TEOS gave the highest separation selectivity of 1116 with a flux of 3.33 × 10−2 kg/m2 h at 30 °C for 10 mass% of water in the feed. Except for membrane M-1, the observed values of water flux are close to the values of total flux in the investigated composition range, signifying that the developed membranes are highly water selective. From the temperature dependence of diffusion and permeation values, the Arrhenius apparent activation parameters have been estimated. The resulting activation energy values, obtained for water permeation being lower than those of acetic acid permeation values, suggest that the membranes have higher separation efficiency. The activation energy values calculated for total permeation and water permeation are close to each other for all the membranes except membrane M-1, signifying that coupled-transport is minimal as due to higher selective nature of membranes. Further, the activation energy values for permeation of water and diffusion of water are almost equivalent, suggesting that both diffusion and permeation contribute almost equally to the pervaporation process. The negative heat of sorption values (ΔHs) for water in all the membranes suggests the Langmuir's mode of sorption.  相似文献   

10.
Copolymers of methyl acrylate and acrylic acid were synthesized to fabricate membranes ionically crosslinked using aluminum acetylacetonate for the separation of toluene/i-octane mixtures by pervaporation at high temperatures. The formation of the ionic crosslinking via bare aluminum cations was characterized by UV–VIS spectroscopy and solubility tests. Reproducibility and the reliability of the methodology for membrane formation and crosslinking were confirmed. The effects of acrylic acid content, crosslinking conditions, pervaporation temperature, and feed composition on the normalized flux and the selectivity for toluene/i-octane mixtures were determined. A typical crosslinked membrane showed a normalized flux of 26 kg μm m−2 h−1 and a selectivity of 13 for a 50/50 wt.% feed mixture at 100°C. The pervaporation properties including solubility selectivity and diffusivity selectivity are discussed in terms of swelling behavior. The performance of the current membranes were benchmarked against other membrane materials reported in the literature.  相似文献   

11.
Poly(ethylene oxide imide) segmented copolymer (PEO‐PI) membranes were crosslinked by the chemical reaction between ethylene glycol diglycidyl ether and benzylalcohol groups of diamine moieties in polyimide segments at high temperatures. Sorption and diffusion of penetrants took place in poly(ethylene oxide) segment microdomains. Sorption and desorption behavior of pure vapors such as benzene (Bz), cyclohexane (Cx) and n‐hexane (Hx) was classified as the Fickian diffusion. Sorption isotherms of binary liquid mixtures could be represented by the Flory–Rehner model, but the model overpredicted the sorption amounts of Cx and Hx, leading to small predictions of sorption selectivity αS for Bz/Cx and Bz/Hx systems. UNIFAC‐FV model fairly well predicted the sorption amounts of aromatic hydrocarbons, but significantly overestimated those of nonaromatic ones, leading to too small predictions of αS. Pervaporation (PV) behavior of PEO‐PI membranes was governed by sorption behavior followed by membrane swelling. Diffusion coefficient weakly depended on the minimum cross section of a penetrant. The diffusivity selectivity αD hardly depended on the feed composition and was about 1.4 and 0.75 for Bz/Cx and Bz/Hx, respectively. PV selectivity αPV was larger for Bz/Hx than for Bz/Cx because of larger αS. PEO‐PI membranes displayed high specific permeation flux Ql and reasonably high αPV for aromatic/nonaromatic hydrocarbons; for example, Ql = 60 Kg μm/(m2 h) and αPV = 8 for a feed mixture containing Bz, Tol, Hx, n‐Ot and i‐Ot of 20 wt % at 353 K. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1800–1811, 2000  相似文献   

12.
The evaporation of methanol/water, ethanol/water and propanol/water mixtures across hydrophobic porous membranes (Gore-Tex polytetrafluoroethylene membranes) with different nominal pore radii was studied at ambient temperatures. The evaporation process leads to a higher concentration of the alcohols in the vapor phase. There exists only a limited composition range (dilute solutions of alcohols in water) in which evaporation experiments are possible. The experimental results are interpreted in terms of the average pore diameter of the membranes, the vaporliquid equilibrium data of the systems and the measured contact angles between methanol/water, ethanol/water and n-propanol/water mixtures and polytetrafluoroethylene, respectively.  相似文献   

13.
Thermoosmosis of ternary mixtures of oxygen, nitrogen, and carbon dioxide across a porous unglazed membrane has been studied, The thermoosmotic pressure difference, ΔP, created by a temperature difference, ΔT, has been measured at various mean temperatures and pressures. Experimental data have been interpreted in the light of non-equilibrium thermodynamics of irreversible processes and the dusty gas model of Mason. Heats of transport for the mixtures, Q, have been estimated from the measured values of pressure difference and temperature difference. It is found that the heat of transport of mixtures is independent of the mean temperature and temperature difference as was found in earlier studies on multicomponent mixtures.  相似文献   

14.
The detection of N-nitrosamines (NAms) in water supplies is an environmental and public health issue because many NAms are classified as probable human carcinogens. Non-aromatic (aliphatic and cyclic) NAms are more toxic than aromatic ones as their maximum admissible concentration is limited in drinking water (20–2000 ng L−1). From that premise, a simple and novel method to discriminate between both fractions of NAms according to their toxicity was proposed. An automatic solid-phase extraction unit containing two sequential sorbent columns was constructed. A sample volume of 25 mL was passed through a C60 fullerene column in which only the aromatic fraction was retained, and the effluent was then passed through a Merck LiChrolut EN column where the non-aromatic fraction was retained. Following elution of the non-aromatic NAms with 150 μL of ethyl acetate–acetonitrile (9:1), 1 μL of the extract was injected into a GC/MS. A comparative study of C60 and C70 fullerenes and nanotubes revealed C60 fullerene to be the best choice to selectively retain the aromatic fraction. The method exhibits a linear range of 15–20,000 ng L−1; limits of detection of 4–15 ng L−1; and an RSD of ∼5%. Recoveries throughout the whole method were between 95% and 102% for six non-aromatic NAms spiked into several types of waters. Our study demonstrates that a simple and fast SPE system (10 min per sample) with a customary GC–MS instrument permits the quantification of these amines in complex matrices with considerable sensitivity and selectivity.  相似文献   

15.
Homogeneous membranes were prepared by blending poly(acrylic acid) with poly(vinyl alcohol). These blend membranes were evaluated for the selective separation of alcohols from toluene by pervaporation. The flux and selectivity of the membranes were determined both as a function of the blend composition and of the feed mixture composition. The results showed that a polymer blending method could be very useful to develop new membranes with improved permselectivity. The pervaporation properties could be optimized by adjusting the blend composition. All the blend membranes tested showed a decrease in flux with increasing poly(vinyl alcohol) content for both methanol—toluene and ethanol—toluene liquid mixtures. The alcohols permeated preferentially through all tested blend membranes, and the selectivity values increased with increasing poly(vinyl alcohol) content. The pervaporation characteristics of the blend membranes were also strongly influenced by the feed mixture composition. The fluxes increased exponentially with increasing alcohol concentration in the feed mixtures, whereas the selectivities decreased for both liquid mixtures.  相似文献   

16.
Sorption of single‐component vapors of benzene (Bz), n‐hexane (Hx), and cyclohexane (Cx), and of binary liquid mixtures of Bz/Hx and Bz/Cx in a polyimide from 3,3′,4,4′‐diphenylsulfone‐tetracarboxylic dianhydride (DSDA) and 2,8(6)‐dimethyl‐3,7‐diaminobenzothiophene‐5,5‐dioxide (DDBT) were investigated in detail at 333 K. Sorption and desorption of vapors followed the non‐Fickian kinetics and the sorption isotherms were concave to the vapor activity. For the binary liquids, the sorption isotherms of the Bz component were concave to the Bz composition in feed, whereas those of Hx and Cx were convex because of competitive sorption. As a result, the solubility selectivity was much larger than the sorption ratio of pure liquids. The concentration‐averaged diffusion coefficients of Bz (D̄Bz) and Hx (D̄Hx) were evaluated using the sorption and pervaporation data of the polyimide membrane toward the binary mixtures. A kind of coupling effect of the coexisting component on D̄ was observed. That is, D̄ of penetrant with smaller molecular size (Hx and Bz for Bz/Hx and Bz/Cx systems, respectively) was reduced by the presence of penetrant with larger molecular size (Bz and Cx, respectively) and vice versa. D̄Bz was similar to D̄Hx, but much larger than D̄Cx. The difference in PV behavior between Bz/Hx and Bz/Cx systems for glassy polymer membranes was understood based on the aforementioned features of sorption and diffusion. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2954–2964, 2000  相似文献   

17.
18.
Pervaporation separation of alkane/thiophene mixtures with PDMS membrane   总被引:7,自引:0,他引:7  
Worldwide concerns over environment have stimulated increasing interest both in academic and industry for deep desulfurization of gasoline. Polydimethylsiloxane (PDMS) composite membrane was used to separate the binary and multicomponent alkane/thiophene mixtures by pervaporation. Effect of carbon number and concentration of alkane, and of feed temperature, on the separation efficiency of alkane/thiophene mixtures was investigated experimentally. Experimental results of binary mixtures indicated that the total fluxes for different alkane/thiophene mixtures decrease with increase of carbon number in the alkanes. Corresponding activation energies of permeation for alkanes in PDMS membrane increase with increase of carbon number in the alkanes. Differences of molecular size and structure of the alkanes lead to various selectivities thereof within PDMS membrane. In addition, the permeability and activation energy of thiophene in various systems differ from each other due to coupling effect which should be taken into consideration when dealing with multicomponent systems. Pervaporation results of ternary systems indicated that, the increase of content of lighter alkane in feed would result in a larger total flux, but a smaller selectivity to thiophene simultaneously. A quaternary system, the mixture of n-heptane, n-octane, n-nonane and thiophene, was employed to simulate the desulfurization process of gasoline. With the membrane having a PDMS layer of 11 μm, the total flux was measured to be about 1.65 kg/m2 h, with the corresponding enrichment factor of thiophene 3.9 at 30 °C.  相似文献   

19.
The side-chain liquid-crystalline polymer (LCP) was synthesized by the addition of the mesogenic monomer to poly(methylsiloxane) with Pt catalyst. When the benzene/cyclohexane mixtures were permeated through the LCP membranes by pervaporation at various temperatures, the permeation rate increased with increasing benzene concentration in the feed solution and permeation temperature. Though the LCP membranes exhibited a benzene permselectivity, a mechanism of the permeation and separation for the benzene/cyclohexane mixtures was different in the glassy, liquid-crystalline and isotropic state of the LCP membranes. These results suggested that the permselectivity was fairly influenced by the change of the LCP membrane structure, that is, a state transformation. It was found that a balance of the orientation of mesogenic groups and flexibility of siloxane chains is very important for the permeability and selectivity. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys, 35: 699–707, 1997  相似文献   

20.
Different fluorinated copolyimides have been synthesized using 6FDA (4,4′-(hexafluoroisopropylidene)diphthalic anhydride), DABA (3,5-diaminobenzoic acid), 4MPD (2,3,5,6-tetramethyl-1,4-phenylenediamine) and 3MPD (2,4,6-trimethyl-1,3-phenylenediamine). The copolyimides with different compositions of monomers were used as membrane materials in order to remove benzothiophene from benzothiophene/n-dodecane mixtures by pervaporation. This is especially of interest in fuel cell applications where sulphur components are poisoning the catalyst and therefore reducing the life time of the system. In order to figure out which operation parameters, e.g. temperature, pressure and membrane material are necessary for the enrichment of the sulphur-aromatic component and sufficient transmembrane fluxes, different pervaporation experiments have been performed. Feed temperatures have been varied between 353 and 413 K and permeate pressures between 19 and 45 mbar, average fluxes and enrichment factors β were determined. Activation energies for permeation were calculated for benzothiophene and n-dodecane in order to understand the temperature-dependent separation characteristics. The influence of the different diamine structures on the separation characteristics was investigated. It was found out that slight differences in structure, e.g. an additional methyl group on the polymer backbone does not have a significant effect on the pervaporation properties. Total fluxes for 6FDA–4MPD/DABA 9:1 and 6FDA–3MPD/DABA 9:1 membranes were 15.2 and 10.3 kg μm/(m2 h) at 393 K, with the corresponding enrichment factor of benzothiophene of 3.6 and 3.3, respectively. With increasing temperature, enhanced fluxes as well as enhanced enrichment factors were observed. Furthermore it was found that higher permeate pressures led to a decrease of the enrichment factor with no significant change in flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号