首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 209 毫秒
1.
We show that Van der Heyden's variable dimension algorithm and Dantzig and Cottle's principal pivoting method require 2n–1 pivot steps to solve a class of linear complementarity problems of ordern. Murty and Fathi have previously shown that the computational effort required to solve a linear complementarity problem of ordern by Lemke's complementary pivot algorithm or by Murty's Bard-type algorithm is not bounded above by a polynomial inn. Our study shows that the variable dimension algorithm and the principal pivoting method have similar worst case computational requirements.  相似文献   

2.
An algorithm for the linear complementarity problem is developed which uses principal pivots only. The algorithm is shown to be equivalent to Lemke's algorithm. The advantage of the proposed algorithm is that infeasibility tests may be made after each principal pivot. One such test is equivalent to a check whether the matrix satisfies the “plus” condition of copositive plus matrices or the condition of classL 2 of Eaves.  相似文献   

3.
K. Funk  F. Pfeiffer 《PAMM》2003,2(1):228-229
This paper presents a stable implicit first order time‐stepping method for the simulation of stiff mechanical systems with unilateral constraints and Coulomb friction. It ensures that the unilateral constraints are fulfilled directly on the displacement level. The resulting linear complementarity problem is formulated in a very compact nonstandard way. A modified form of Lemke's algorithm is presented to solve it.  相似文献   

4.
This paper is concerned with the properties of the value-iteration operator0 which arises in undiscounted Markov decision problems. We give both necessary and sufficient conditions for this operator to reduce to a contraction operator, in which case it is easy to show that the value-iteration method exhibits a uniform geometric convergence rate. As necessary conditions we obtain a number of important characterizations of the chain and periodicity structures of the problem, and as sufficient conditions, we give a general “scrambling-type” recurrency condition, which encompasses a number of important special cases. Next, we show that a data transformation turns every unichained undiscounted Markov Renewal Program into an equivalent undiscounted Markov decision problem, in which the value-iteration operator is contracting, because it satisfies this “scrambling-type” condition. We exploit this contraction property in order to obtain lower and upper bounds as well as variational characterizations for the fixed point of the optimality equation and a test for eliminating suboptimal actions.  相似文献   

5.
In this paper, we study minimal zero norm solutions of the linear complementarity problems, defined as the solutions with smallest cardinality. Minimal zero norm solutions are often desired in some real applications such as bimatrix game and portfolio selection. We first show the uniqueness of the minimal zero norm solution for Z-matrix linear complementarity problems. To find minimal zero norm solutions is equivalent to solve a difficult zero norm minimization problem with linear complementarity constraints. We then propose a p norm regularized minimization model with p in the open interval from zero to one, and show that it can approximate minimal zero norm solutions very well by sequentially decreasing the regularization parameter. We establish a threshold lower bound for any nonzero entry in its local minimizers, that can be used to identify zero entries precisely in computed solutions. We also consider the choice of regularization parameter to get desired sparsity. Based on the theoretical results, we design a sequential smoothing gradient method to solve the model. Numerical results demonstrate that the sequential smoothing gradient method can effectively solve the regularized model and get minimal zero norm solutions of linear complementarity problems.  相似文献   

6.
We computationally assess policies for the elevator control problem by a new column-generation approach for the linear programming method for discounted infinite-horizon Markov decision problems. By analyzing the optimality of given actions in given states, we were able to provably improve the well-known nearest-neighbor policy. Moreover, with the method we could identify an optimal parking policy. This approach can be used to detect and resolve weaknesses in particular policies for Markov decision problems.  相似文献   

7.
张丽丽  任志茹 《计算数学》2021,43(3):401-412
为了高效求解中小型线性互补问题,本文提出了改进的分块模方法,并证明了关于严格对角占优(对角元素均为正数)线性互补问题的收敛性.对于广义对角占优线性互补问题,先将其转化为严格对角占优线性互补问题,再采用改进的分块模方法求解.数值结果表明,改进的分块模方法在求解广义对角占优线性互补问题时在内迭代次数和计算时间上均明显优于分...  相似文献   

8.
Markov models are commonly used in modelling many practical systems such as telecommunication systems, manufacturing systems and inventory systems. However, higher-order Markov models are not commonly used in practice because of their huge number of states and parameters that lead to computational difficulties. In this paper, we propose a higher-order Markov model whose number of states and parameters are linear with respect to the order of the model. We also develop efficient estimation methods for the model parameters. We then apply the model and method to solve the generalised Newsboy's problem. Numerical examples with applications to production planning are given to illustrate the power of our proposed model.  相似文献   

9.
In this paper, we introduce a Markov decision model with absorbing states and a constraint on the asymptotic failure rate. The objective is to find a stationary policy which minimizes the infinite horizon expected average cost, given that the system never fails. Using Perron-Frobenius theory of non-negative matrices and spectral analysis, we show that the problem can be reduced to a linear programming problem. Finally, we apply this method to a real problem for an aeronautical system.  相似文献   

10.
The practical usefulness of Markov models and Markovian decision process has been severely limited due to their extremely large dimension. Thus, a reduced model without sacrificing significant accuracy can be very interesting.

The homogeneous finite Markov chain's long-run behaviour is given by the persistent states, obtained after the decomposition in classes of connected states. In this paper we expound a new reduction method for ergodic classes formed by such persistent states. An ergodic class has a steady-state independent of the initial distribution. This class constitutes an irreducible finite ergodic Markov chain, which evolves independently after the capture of the event.

The reduction is made according to the significance of steady-state probabilities. For being treatable by this method, the ergodic chain must have the Two-Time-Scale property.

The presented reduction method is an approximate method. We begin with an arrangement of irreducible Markov chain states, in decreasing order of their steady state probability's size. Furthermore, the Two-Time-Scale property of the chain enables us to make an assumption giving the reduction. Thus, we reduce the ergodic class only to its stronger part, which contains the most important events having also a slower evolution. The reduced system keeps the stochastic property, so it will be a Markov chain  相似文献   

11.
《Optimization》2012,61(1-4):149-162
Motivated by the successful application of mathematical programming techniques to difficult machine learning problems, we seek solutions of concave minimization problems over polyhedral sets with minimum number of nonzero components. We that if

such problems have a solution, they have a vertex solution with a minimal number of zeros. This includes linear programs and general linear complementarity problems. A smooth concave exponential approximation to a step function solves the minimumsupport problem exactly for a finite value of the smoothing parameter. A fast finite linear-programming-based iterative method terminates at a stationary point, which for many important real world problems provides very useful answers. Utilizing the

complementarity property of linear programs and linear complementarity problems, an upper bound on the number of nonzeros can be obtained by solving a single convex minimization problem on a polyhedral set  相似文献   

12.
A class of stochastic linear complementarity problems (SLCPs) with finitely many realizations is considered. We first formulate the problem as a new constrained minimization problem. Then, we propose a feasible semismooth Newton method which yields a stationary point of the constrained minimization problem. We study the condition for the level set of the objective function to be bounded. As a result, the condition for the solution set of the constrained minimization problem is obtained. The global and quadratic convergence of the proposed method is proved under certain assumptions. Preliminary numerical results show that this method yields a reasonable solution with high safety and within a small number of iterations.  相似文献   

13.
A variational inequality problem (VIP) satisfying a constraint qualification can be reduced to a mixed complementarity problem (MOP). Monotonicity of the VIP implies that the MOP is also monotone. Introducing regularizing perturbations, a sequence of strictly monotone mixed complementarity problems is generated. It is shown that, if the original problem is solvable, the sequence of computable inexact solutions of the strictly monotone MCP's is bounded and every accumulation point is a solution. Under an additional condition on the precision used for solving each subproblem, the sequence converges to the minimum norm solution of the MCP.  相似文献   

14.
In this paper, we consider the second-order cone complementarity problem with P 0-property. By introducing a smoothing parameter into the Fischer-Burmeister function, we present a smoothing Newton method for the second-order cone complementarity problem. The proposed algorithm solves only a linear system of equations and performs only one line search at each iteration. At the same time, the algorithm does not have restrictions on its starting point and has global convergence. Under the assumption of nonsingularity, we establish the locally quadratic convergence of the algorithm without strict complementarity condition. Preliminary numerical results show that the algorithm is promising.  相似文献   

15.
《Optimization》2012,61(3):359-369
In this article, we present an algorithm to compute the minimum norm solution of the positive semidefinite linear complementarity problem. We show that its solution can be obtained using the alternative theorems and a convenient characterization of the solution set of a convex quadratic programming problem. This problem reduces to an unconstrained minimization problem with once differentiable convex objective function. We propose an extension of Newton's method for solving the unconstrained optimization problem. Computational results show that convergence to high accuracy often occurs in just a few iterations.  相似文献   

16.
We give new error bounds for the linear complementarity problem when the involved matrix is an H-matrix with positive diagonals. We find classes of H-matrices for which the new bounds improve considerably other previous bounds. We also show advantages of these new bounds with respect the computational cost. A new perturbation bound of H-matrices linear complementarity problems is also presented.  相似文献   

17.
My master thesis concerns the solution linear complementarity problems (LCP). The Lemke algorithm, the most commonly used algorithm for solving a LCP until this day, was compared with the piecewise Newton method (PLN algorithm). The piecewise Newton method is an algorithm to solve a piecewise linear system on the basis of damped Newton methods. The linear complementarity problem is formulated as a piecewise linear system for the applicability of the PLN algorithm. Then, different application examples will be presented, solved with the PLN algorithm. As a result of the findings (of my master thesis) it can be assumed that – under the condition of coherent orientation – the PLN-algorithm requires fewer iterations to solve a linear complementarity problem than the Lemke algorithm. The coherent orientation for piecewise linear problems corresponds for linear complementarity problems to the P-matrix-property. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We show that recently developed interior point methods for quadratic programming and linear complementarity problems can be put to use in solving discrete-time optimal control problems, with general pointwise constraints on states and controls. We describe interior point algorithms for a discrete-time linear-quadratic regulator problem with mixed state/control constraints and show how they can be efficiently-incorporated into an inexact sequential quadratic programming algorithm for nonlinear problems. The key to the efficiency of the interior-point method is the narrow-banded structure of the coefficient matrix which is factorized at each iteration.This research was supported by the Applied Mathematical Sciences Subprogram of the Office of Energy Research, US Department of Energy, under Contract W-31-109-Eng-38.  相似文献   

19.
This paper provides an analysis of the polynomiality of primal-dual interior point algorithms for nonlinear complementarity problems using a wide neighborhood. A condition for the smoothness of the mapping is used, which is related to Zhu’s scaled Lipschitz condition, but is also applicable to mappings that are not monotone. We show that a family of primal-dual affine scaling algorithms generates an approximate solution (given a precision ε) of the nonlinear complementarity problem in a finite number of iterations whose order is a polynomial ofn, ln(1/ε) and a condition number. If the mapping is linear then the results in this paper coincide with the ones in Jansen et al., SIAM Journal on Optimization 7 (1997) 126–140. Research supported in part by Grant-in-Aids for Encouragement of Young Scientists (06750066) from the Ministry of Education, Science and Culture, Japan. Research supported by Dutch Organization for Scientific Research (NWO), grant 611-304-028  相似文献   

20.
In this paper, we present a new relaxation method for mathematical programs with complementarity constraints. Based on the fact that a variational inequality problem defined on a simplex can be represented by a finite number of inequalities, we use an expansive simplex instead of the nonnegative orthant involved in the complementarity constraints. We then remove some inequalities and obtain a standard nonlinear program. We show that the linear independence constraint qualification or the Mangasarian–Fromovitz constraint qualification holds for the relaxed problem under some mild conditions. We consider also a limiting behavior of the relaxed problem. We prove that any accumulation point of stationary points of the relaxed problems is a weakly stationary point of the original problem and that, if the function involved in the complementarity constraints does not vanish at this point, it is C-stationary. We obtain also some sufficient conditions of B-stationarity for a feasible point of the original problem. In particular, some conditions described by the eigenvalues of the Hessian matrices of the Lagrangian functions of the relaxed problems are new and can be verified easily. Our limited numerical experience indicates that the proposed approach is promising.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号