首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyimide membranes derived from 6FDA-DAM:DABA and 6FDA-6FpDA:DABA copolymers have been used to separate 50/50 CO2/CH4 mixtures and multicomponent synthetic natural gas mixtures at 35 °C and feed pressures up to 55 atm. For 6FDA-DAM:DABA 2:1 membranes the effects of thermal annealing and covalent crosslinking are decoupled with respect to effects on permeabilities and selectivity. Crosslinking at 295 °C with 1,4-butylene glycol and 1,4-cyclohexanedimethanol increases CO2 permeabilities by factors of 4.1 and 2.4, respectively, at 20 atm feed pressure, without a loss in selectivity, relative to crosslinking at 220 °C. Thermal annealing and crosslinking also reduce CO2 plasticization effects. Crosslinking of DABA-containing copolymers, therefore, can produce membranes with tunable transport properties that offer significantly higher performance with better plasticization-resistance than that reported in the literature for the commercial polymers Matrimid® and cellulose acetate for CO2 removal from natural gas mixtures. Separation of complex mixtures containing CO2, CH4, C2H6, C3H8, and C4H10 or toluene results in a significant decrease of the CO2 permeability, but only a moderate decrease in the CO2/CH4 selectivity.  相似文献   

2.
Copolymers of methyl acrylate and acrylic acid were synthesized to fabricate membranes ionically crosslinked using aluminum acetylacetonate for the separation of toluene/i-octane mixtures by pervaporation at high temperatures. The formation of the ionic crosslinking via bare aluminum cations was characterized by UV–VIS spectroscopy and solubility tests. Reproducibility and the reliability of the methodology for membrane formation and crosslinking were confirmed. The effects of acrylic acid content, crosslinking conditions, pervaporation temperature, and feed composition on the normalized flux and the selectivity for toluene/i-octane mixtures were determined. A typical crosslinked membrane showed a normalized flux of 26 kg μm m−2 h−1 and a selectivity of 13 for a 50/50 wt.% feed mixture at 100°C. The pervaporation properties including solubility selectivity and diffusivity selectivity are discussed in terms of swelling behavior. The performance of the current membranes were benchmarked against other membrane materials reported in the literature.  相似文献   

3.
《Fluid Phase Equilibria》2002,193(1-2):203-216
Fourier transform infrared (FT-IR) spectroscopy has been used to measure the molarities of hydrogen bonding species between carboxylic acids (acetic acid and palmitic acid) and water in supercritical CO2. The equilibrium constants of dimerization for the carboxylic acids were determined in supercritical CO2 with octane. Further, the interactions of propanol-d (1- and 2-propanol-d) or xylenol (2,5-, 2,6- and 3,4-xylenol) isomers with acetone in supercritical CO2 were studied. Experiments were carried out at 308.2–313.2 K and 7.0–20.0 MPa. The molarities of hydrogen bonding species between the carboxylic acids and water in supercritical CO2 increase with the increasing molarity of water. The carboxylic acids interact more easily with ethanol than water in supercritical CO2. For supercritical CO2+carboxylic acid+octane systems, the equilibrium constants between the carboxylic acid monomer and dimer increase with the increasing molarity of octane. The equilibrium constants of the carboxylic acids seem to approach to those in liquid paraffin according to addition of octane in supercritical CO2. The amount of the interaction species between 1-propanol-d and acetone is larger than that between 2-propanol-d and acetone. The amount of acetone interacting with OH group for 3,4-xylenol is the largest among those for xylenol isomers. These differences among the isomers may be caused by the screen effects of methyl groups around hydroxyl group for the isomers.  相似文献   

4.
A decarboxylative coupling reaction with an alkynyl carboxylic acid and aryl iodides in the presence of a nickel catalyst was developed. When the reaction was conducted with NiCl2 (10 mol%), Xantphos (15 mol%), Mn (1.0 equiv), and Cs2CO3 (1.5 equiv), the desired diaryl alkynes were formed in moderated to good yields. Furthermore, this method does not produce the diyne, which is formed in the homocoupling of alkynyl carboxylic acids.  相似文献   

5.
In the present work, the solubility of CO2 in aqueous solutions of potassium prolinate (KPr) and potassium α-aminobutyrate (KAABA) was measured at temperatures (313.2, 333.2, and 353.2) K and CO2 partial pressures up to 1000 kPa for amino acid salt concentrations: KPr, w = (7.5, 14.5, and 27.4 wt%) and KAABA, w = (6.9, 13.4, and 25.6 wt%). It was found that the CO2 absorption capacities of the studied amino acid salt systems were considerably high and comparable with that of industrially important alkanolamines including monoethanolamine. The CO2 loadings in aqueous potassium α-aminobutyrate at high pressures were also found to be generally higher than the loadings in aqueous potassium prolinate. A modified Kent–Eisenberg model was applied to correlate the CO2 solubility in the amino acid salt solution as function of CO2 partial pressure, temperature, and concentration. The model gave good representation of the (vapour + liquid) equilibrium data obtained for the amino acid salt systems studied, and provided accurate predictions of the solubility.  相似文献   

6.
In this report, we describe the synthesis and characterization of photosensitive poly(l-lactide) with a pendent cinnamate group. α,ω-Dihydoxy terminated poly(l-lactide) (PLLA-diol) [molecular weights (MW); 2000, 4000 and 9000 g/mol ] was chain-extended with a diacyl chloride of 5-cinnamoyloxyisophthalic acid (ICA) to obtain high-molecular-weight photocrosslinkable poly(l-lactide)s (ICA/PLLA). The resulting polyesters were characterized by proton nuclear magnetic resonance spectroscopy, gel permeation chromatography, ultraviolet–visible spectroscopy, differential scanning calorimetry, thermomechanical analysis and thermogravimetry. The glass transition temperature (Tg), the melting temperature (Tm) and the degree of relative crystallinity (Xc) of ICA/PLLAs increased with the increasing MW of the PLLA-diols. The photosensitive ICA/PLLAs were irradiated with a 400 W high-pressure mercury lamp (λ > 280 nm) for various times to produce the PLLA gel films without a photoinitiator. The crosslinking rate monitored by a UV–vis spectrum decreased with the increasing MW of the PLLA-diols. The crosslinking of the ICA/PLLA ?4000 film enhanced the Tg slightly and the tensile strength and Young’s modulus significantly, while reduced the Tm and Xc. The enzymatic degradation was measured by the weight loss of the films in a phosphate buffer solution with proteinaze-k. The crosslinking of the films decreased markedly the degradation rate.  相似文献   

7.
Anhydride terminated polyamic acid prepolymer was prepared from pyromellitic dianhydride and a diamine (para-phenylene diamine/benzidine) in dimethyl formamide. The prepolymer was reacted with the other diamine to obtain (AnB)m block copolymic acid. The polyamic acid was converted to the polyimide by thermal cyclodehydration. The properties of block copolyimides were compared with those of random copolyimides prepared by conventional routes.  相似文献   

8.
A new hybrid organic–inorganic material with the structural formula unit [La(H2O)4(m-PO3C6H4COOH)(m-PO2(OH)C6H4COOH)(m-PO(OH)2C6H4COOH)]2 (or [La(H2O)4C21H18O15P3]2) has been synthesized under hydrothermal condition from La(NO3)3·6H2O and 3-phosphonobenzoic acid (m-PO(OH)2–C6H4–COOH) which is a rigid organic precursor possessing two types of functional groups: phosphonic acid and carboxylic acid. The two units of the produced hybrid are linked together by hydrogen bonds leading to a layered framework composing of by a repetition of inorganic and organic slices. The organic layers consist of dimeric units made of two meta-phosphono-benzoic acid linked together by hydrogen bonds involving their COOH groups. Two kinds of dimeric units are observed: PO3C6H4COOH?HOOCC6H4PO(OH)2, present 2 times in the structure, and PO2(OH)C6H4COOH?HOOCC6H4PO2(OH). The material crystallises in a monoclinic cell (C2/c (15) space group) with the following parameters: a = 42.515(4) Å, b = 7.4378(6) Å, c = 20.307(2) Å, β = 118.031(6)°, V = 5668.2(9) Å3, Z = 4, density = 1.908 g/cm3.  相似文献   

9.
Solubility data of CO2 in aqueous N-methyldiethanolamine (MDEA) solutions of concentration (2.52, 3.36, and 4.28) kmol/m3 were obtained at temperatures (313, 323, and 343) K and partial pressures ranging from about (30 to 5000) kPa. A thermodynamic model based on extended Debye–Hückel theory was applied to predict and correlate of CO2 solubility in various aqueous amine solutions. The effect of piperazine (PZ) concentration on CO2 loading in MDEA solutions was determined at PZ concentration (0.36, 0.86, and 1.36) kmol/m3. Using experimental data in various temperatures the interaction parameters of activity coefficient model for these systems were determined. The results show the model consistency with experimental and literature data and PZ is beneficial to the CO2 loading. The comparison of results of this study with previous data work shows the wide range of CO2 loading considered in this work and the better agreement of model with experimental data. The average absolute relative deviation percent (δAAD) for all data points were 8.11%.  相似文献   

10.
Benzil,1,2-diphenylethane-1,2-dione, was used as an excellent electrocatalyst for reduction of carbon dioxide, CO_2. The reduction overpotential of CO_2 was reduced about 900 m V in the presence of a benzil mediator. The chemical reaction of the product of the electrocatalytic reduction of CO_2,(activated CO_2,CO_2~(·-)) with pyridine at a glassy carbon electrode, GCE, surface and in an acetonitrile-But_4NClO_4 solution was investigated by cyclic voltammetry, chronoamperometry and controlled potential coulometry.By chronoamperometry, the catalytic rate constant, k, for the electron transfer between benzil and CO_2 was obtained as 8.1 ± 0.4 M~(-1)s~(-1). The results indicate that pyridine has a strong interaction with the activated CO_2. The coulometry method was used to obtain the product of the pyridine chemical reaction with CO_2~(·-). The spectral characterizations of FTIR,~1H and ~(13)C NMR of the coulometry experiment product proved that the pyridine anion radical, Py~(·-), was carboxylated by CO_2~(·-), and isonicotinic acid is the final major product.  相似文献   

11.
A water-swollen type of poly(vinyl alcohol) (PVA)/poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA) cation-exchange membrane was prepared and characterized in terms of its electrochemical properties including ion-exchange capacity (IEC), electrical resistance, and transport number, etc. PVA/PSSA-MA membranes exhibited low electrical resistance and highly swelling property. In spite of 2–4 times higher water swelling ratio (WSR) than that of CMX (Tokuyama Corp., Japan), the transport number of the prepared membrane was comparable to that of the commercial membrane (tn>0.93). Moreover, the electric resistance of PVA/PSSA-MA membrane was measured as low as 1.0–1.5 Ω cm2. Further, in this study, interrelation between the membrane characteristics and crosslinking was investigated, and the result exhibited that the crosslinking degree is one of major factors affecting the ion transport through a water-swollen ion-exchange membrane (IEM).  相似文献   

12.
Glycerol-based liquid membranes immobilized in the pores of hydrophilic microporous hollow fibers have been studied for selective separation of CO2 from a mixed gas (CO2, N2) feed having low concentrations of CO2 characteristic of gases encountered in space walk and space cabin atmosphere. The immobilized liquid membranes (ILMs) investigated consist of sodium carbonate–glycerol or glycine-Na–glycerol solution. Based on the performances of such liquid membranes in flat hydrophilic porous substrates [Chen et al., Ind. Eng. Chem. Res. 38 (1999) 3489; Chen et al., Ind. Eng. Chem. Res. 39 (2000) 2447], hollow fiber-based ILMs were studied at selected CO2 partial pressure differentials (ΔpCO2 range 0.36–0.50 cmHg), relative humidities (RH range 45–100%), as well as carrier concentrations. The sodium carbonate concentration was primarily 1.0 mol/dm3; the glycine-Na concentration was 3.0 mol/dm3. The sweep gas was always dry helium and it flowed on the shell side. Very high CO2/N2 selectivities were observed with porous polysulfone microfiltration membranes as substrate. As in the case of flat film-based ILMs (see references above), feed side RH is an important factor determining the ILM performances. Generally, lower permeances and greater CO2/N2 selectivity values were observed at lower feed stream RHs. When the feed side average RH=60%, pCO2,f=0.005 atm and glycine-Na concentration was 3.0 M, the CO2/N2 separation factor observed was over 5000. Prolonged runs lasting for 300 h showed that the hollow fiber-based ILM permeation performances were stable.  相似文献   

13.
In the present study, influence of the alkyl group and temperature on the interactions between the carboxylic acid and ionic liquid (IL) mixtures were discussed in term of density and sound velocity measurements. The IL used in this study was 1-butyl-3-methylimidazolium thiocyanate ([BMIM]+[SCN]). The density (ρ), and sound velocity (u), of the IL, acetic acid, propionic acid, and their corresponding binary systems {[BMIM]+[SCN] (x1) + acetic or propionic acid (x2)} have been measured at T = (293.15, 298.15, 303.15, 308.15 and 313.15) K and at p = 0.1 MPa. The excess molar volumes, VmE, isentropic compressibility, κs, and deviation in isentropic compressibility, Δκs, were calculated using experimental density and sound velocity data, respectively. The Redlich–Kister polynomial equation was used to fit the excess/deviation properties. These results are useful for describing the intermolecular interactions that exist between the IL and carboxylic acid mixtures.  相似文献   

14.
We evaluated the CO2 adsorption capacity on granular and monolith carbonaceous materials, obtained by chemical activation of African palm stones with H3PO4, ZnCl2 and CaCl2 solutions at different concentrations. Textural properties of the synthesized materials were analyzed using N2 adsorption measurements at 77 K, the isotherms showed obtaining of materials microporous and moderately mesoporous, with surface areas between 161 and 1700 m2/g and pore volume between 0.09 and 0.64 cm3 g−1. Were observed different behaviors for textural parameters in each series, associated with the activating agent used in the preparation. The materials obtained have a CO2 adsorption capacity between ∼114 and 254 mg CO2/g, at atmospheric pressure and 273 K. It was established that the total amount of CO2 adsorbed under these experimental conditions is defined by the narrow micropore volume (Vn) and increased the total basicity of the materials.  相似文献   

15.
Gassing in batteries is a major issue contributing to capacity fading upon cycling, and thus far, differential electrochemical mass spectrometry (DEMS) has been a suitable analytical tool to investigate such gas evolution reactions. However, the identity of molecules is ambiguous knowing only the m/z value(s) and quantification is complicated. Therefore, the setup of a novel technique for in situ gas analysis of operating lithium-ion batteries is introduced, namely, DEMS combined with infrared spectroscopy. In a “long-term” study of a Li1 + xNi0.5Co0.2Mn0.3O2 (NCM 523)/graphite cell being close to technical conditions, we monitor the CO2 evolution over more than twenty cycles and show the dependence of the amount of generated CO2 on the charge cut-off potential. Furthermore, we deconvolute the MS channel m/z = 28 and show, for the first time, the direct observation of its constituent gases. Other gaseous decomposition products (like CO2 here) can be determined unambiguously as well through both their m/z values and their characteristic IR absorptions, but are not discussed here.  相似文献   

16.
In this study, a new set of data for the equilibrium solubility of carbon dioxide in the amine solvent system that consists of triethanolamine (TEA), piperazine (PZ), and water is presented. Equilibrium solubility values were obtained at T = (313.2, 333.2, and 353.2) K and pressures up to 153 kPa using the vapour-recirculation equilibrium cell. The TEA concentrations in the considered ternary (solvent) mixture were (2 and 3) kmol · m?3 and those of PZ’s were (0.5, 1.0, and 1.5) kmol · m?3. The solubility data (CO2 loading in the amine solution) obtained were correlated as a function of CO2 partial pressure, system temperature, and amine composition via the modified Kent–Eisenberg model. Results showed that the model applied is generally satisfactory in representing the CO2 absorption into mixed aqueous solutions of TEA and PZ.  相似文献   

17.
Removal of acid gases such as CO2 and H2S from natural gas is essential for commercial, safety and environmental protection that demonstrate the importance of gas sweetening process. Ionic liquids (IL) have been highly demanded as a green solvent to remove acid gases from sour natural gas and capturing of CO2 from flue gases. In this work, the solubility of CO2 in 1-butyl-3-methylimidazolium acetate ([bmim][Ac]) is measured at temperatures (303.15, 328.15, 343.15) K and pressure range of (0.1 to 3.9) MPa. Moreover, the experiments are carried out for simultaneous measurements of (CO2 + H2S) (70% + 30% on a mole basis) solubility in the same ionic liquid at T = (303.15, 323.15, 343.15) K and a pressure range of (0.1 to 2.2) MPa. To model the solubility of acid gases in IL, both physical and chemical equilibria are applied so that the (vapour + liquid) equilibrium calculation is carried out through Cubic-Plus-Association (CPA) EoS. The reaction equilibrium thermodynamic model is used in liquid phase so that the chemical reaction is taking place between IL and acid gasses. The Henry’s and reaction equilibrium constants are obtained though optimization of the solubility data. Using CPA EOS, the pure parameters of [bmim][acetate] are optimised and consequently using these parameters, gas partial pressure calculation is performed for the (CO2 + IL) and (CO2 + H2S + IL) systems. For the (CO2 + IL) system, the percent average absolute deviation (AAD%) of 4.83 is resulted and for the (H2S + CO2 + IL) system the values of 18.8 and 13.7 are obtained for H2S and CO2, respectively.  相似文献   

18.
A magnesium-based metal organic framework (MOF), also known as Mg-MOF-74, was successfully synthesized, characterized, and evaluated for adsorption equilibria and kinetics of CO2 and CH4. The Mg-MOF-74 crystals were characterized with scanning electron microscopy for crystal structure, powder X-ray diffraction for phase structure, and nitrogen adsorption for pore textural properties. Adsorption equilibrium and kinetics of CO2 and CH4 on the Mg-MOF-74 adsorbent were measured in a volumetric adsorption unit at 278, 298, and 318 K and pressures up to 1 bar. It was found that the Mg-MOF-74 adsorbent prepared in this work has a median pore width of 10.2 Å, a BET specific surface area of 1174 m2/g, CO2 and CH4 adsorption capacities of 8.61 mmol g?1 (37.8 wt.%) and 1.05 mmol g?1 (1.7 wt.%), respectively, at 298 K and 1 bar. Both CO2 and CH4 adsorption capacities are significantly higher than those of zeolite 13X under similar conditions. The pressure-dependent equilibrium selectivity of CO2 over CH4 (qCO2/qCH4) in the Mg-MOF-74 adsorbent showed a trend similar to that of zeolite 13X and the intrinsic selectivity of Mg-MOF-74 at zero adsorption loading is 283 at 298 K. The initial heats of adsorption of CO2 and CH4 on the Mg-MOF-74 adsorbent were found to be 73.0 and 18.5 kJ mol?1, respectively. The adsorption kinetic measurements suggest that the diffusivities of CO2 and CH4 on Mg-MOF-74 were comparable to those on zeolite 13X. CH4 showed relatively faster adsorption kinetics than CO2 in both adsorbents. The diffusion time constants of CO2 and CH4 in the Mg-MOF-74 adsorbent at 298 K were estimated to be 8.11 × 10?3 and 4.05 × 10?2 s?1, respectively, showing a modest kinetic selectivity of about 5 for the separation CH4 from CO2.  相似文献   

19.
A flow mixing calorimeter, followed by a vibrating tube densimeter, has been used to measure excess molar enthalpies HmEand excess molar volumesVmE of {xCO2 +  (1   x)SF6}. Measurements over a range of mole fraction x have been made at the temperatures T =  302.15 K and T =  305.65 K at the pressures (3.76, 5.20, 6.20, and 7.38) MPa. The lowest pressure 3.76 MPa is close to thecritical pressure of SF6 and the highest pressure 7.38 MPa is close to the critical pressure of CO 2. Measurements atx =  0.5 have been made over the pressure range (2.5 to 10.0) MPa at the temperature 301.95 K. Some of the measurements are very close to the critical locus of the mixture. The measurements are compared with the Patel–Teja equation of state which reproduces the main features of the excess function curves as well as it does for similar measurements on {xCO2 +  (1   x)C2H6} and{xCO2 +  (1   x)C2H4} . The equation was used to calculate residual enthalpies and residual volumes for the pure components and for the mixture, and inspection of the way these combine to give excess enthalpies and volumes assisted the interpretation of the pressure scan measurements.  相似文献   

20.
The thermodynamic properties ofZn5(OH)6(CO3)2 , hydrozincite, have been determined by performing solubility and d.s.c. measurements. The solubility constant in aqueous NaClO4media has been measured at temperatures ranging from 288.15 K to 338.15 K at constant ionic strength (I =  1.00 mol · kg  1). Additionally, the dependence of the solubility constant on the ionic strength has been investigated up to I =  3.00 mol · kg  1NaClO4at T =  298.15 K. The standard molar heat capacity Cp, mofunction fromT =  318.15 K to T =  418.15 K, as well as the heat of decomposition of hydrozincite, have been obtained from d.s.c. measurements. All experimental results have been simultaneously evaluated by means of the optimization routine of ChemSage yielding an internally consistent set of thermodynamic data (T =  298.15 K): solubility constant log * Kps 00 =  (9.0  ±  0.1), standard molar Gibbs energy of formationΔfGmo {Zn5(OH)6(CO3)2 }  =  (  3164.6  ±  3.0)kJ · mol  1, standard molar enthalpy of formation ΔfHmo{Zn5(OH)6(CO3)2 }  =  (  3584  ±  15)kJ · mol  1, standard molar entropy Smo{Zn5(OH)6(CO3)2 }  =  (436  ±  50)J · mol  1· K  1and Cp,mo / (J · mol  1· K  1)  =  (119  ±  11)  +  (0.834  ±  0.033)T / K. A three-dimensional predominance diagram is introduced which allows a comprehensive thermodynamic interpretation of phase relations in(Zn2 +  +  H2O  +  CO2) . The axes of this phase diagram correspond to the potential quantities: temperature, partial pressure of carbon dioxide and pH of the aqueous solution. Moreover, it is shown how the stoichiometric composition{n(CO3) / n(Zn)} of the solid compoundsZnCO3 and Zn5(OH)6(CO3)2can be checked by thermodynamically analysing the measured solubility data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号