首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this article, Zienkiewicz-Zhu estimator is analyzed for the piecewise linear finite element approximate solution of an elliptic problem. The estimator is proved to be equivalent to the error for the Poisson equation with a homogeneous Dirichlet boundary condition for any triangular regular mesh. No assumptions are needed about the regularity of the solution (i.e., solutions with corner singularities are not excluded). The estimator is also proved to be asymptotically exact on subdomains where the solution is smooth when parallel meshes are used. Therefore, its behavior is similar to that of other well-known estimators. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
We prove the quasi-optimal convergence of a standard adaptive finite element method (AFEM) for a class of nonlinear elliptic second-order equations of monotone type. The adaptive algorithm is based on residual-type a posteriori error estimators and Dörfler's strategy is assumed for marking. We first prove a contraction property for a suitable definition of total error, analogous to the one used by Diening and Kreuzer (2008) and equivalent to the total error defined by Cascón et. al. (2008). This contraction implies linear convergence of the discrete solutions to the exact solution in the usual $H^1$ Sobolev norm. Secondly, we use this contraction to derive the optimal complexity of the AFEM. The results are based on ideas from Diening and Kreuzer and extend the theory from Cascón et. al. to a class of nonlinear problems which stem from strongly monotone and Lipschitz operators.  相似文献   

3.
This article considers a semiparametric varying-coefficient partially linear binary regression model. The semiparametric varying-coefficient partially linear regression binary model which is a generalization of binary regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable. A Sieve maximum likelihood estimation method is proposed and the asymptotic properties of the proposed estimators are discussed. One of our main objects is to estimate nonparametric component and the unknowen parameters simultaneously. It is easier to compute, and the required computation burden is much less than that of the existing two-stage estimation method. Under some mild conditions, the estimators are shown to be strongly consistent. The convergence rate of the estimator for the unknown smooth function is obtained, and the estimator for the unknown parameter is shown to be asymptotically efficient and normally distributed. Simulation studies are carried out to investigate the performance of the proposed method.  相似文献   

4.
The ordinary least squares estimation is based on minimization of the squared distance of the response variable to its conditional mean given the predictor variable. We extend this method by including in the criterion function the distance of the squared response variable to its second conditional moment. It is shown that this “second-order” least squares estimator is asymptotically more efficient than the ordinary least squares estimator if the third moment of the random error is nonzero, and both estimators have the same asymptotic covariance matrix if the error distribution is symmetric. Simulation studies show that the variance reduction of the new estimator can be as high as 50% for sample sizes lower than 100. As a by-product, the joint asymptotic covariance matrix of the ordinary least squares estimators for the regression parameter and for the random error variance is also derived, which is only available in the literature for very special cases, e.g. that random error has a normal distribution. The results apply to both linear and nonlinear regression models, where the random error distributions are not necessarily known.  相似文献   

5.
6.
We present a new approach to the a posteriori error analysis of stable Galerkin approximations of reaction–convection–diffusion problems. It relies upon a non-standard variational formulation of the exact problem, based on the anisotropic wavelet decomposition of the equation residual into convection-dominated scales and diffusion-dominated scales. The associated norm, which is stronger than the standard energy norm, provides a robust (i.e., uniform in the convection limit) control over the streamline derivative of the solution. We propose an upper estimator and a lower estimator of the error, in this norm, between the exact solution and any finite dimensional approximation of it. We investigate the behaviour of such estimators, both theoretically and through numerical experiments. As an output of our analysis, we find that the lower estimator is quantitatively accurate and robust.  相似文献   

7.
王晓光  宋立新 《东北数学》2008,24(2):150-162
This article concerded with a semiparametric generalized partial linear model (GPLM) with the type Ⅱ censored data. A sieve maximum likelihood estimator (MLE) is proposed to estimate the parameter component, allowing exploration of the nonlinear relationship between a certain covariate and the response function. Asymptotic properties of the proposed sieve MLEs are discussed. Under some mild conditions, the estimators are shown to be strongly consistent. Moreover, the estimators of the unknown parameters are asymptotically normal and efficient, and the estimator of the nonparametric function has an optimal convergence rate.  相似文献   

8.
In this paper, we derive an a posteriori error estimator of gradient recovery type for a model optimal control problem. We show that the a posteriori error estimator is equivalent to the discretization error in a norm of energy type on general meshes. Furthermore, when the solution of the control problem is smooth and the meshes are uniform, it is shown to be asymptotically exact.  相似文献   

9.
This article considers a semiparametric varying-coefficient partially linear regression model.The semiparametric varying-coefficient partially linear regression model which is a generalization of the partially linear regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable.A sieve M-estimation method is proposed and the asymptotic properties of the proposed estimators are discussed.Our main object is to estimate the nonparametric component and the unknown parameters simultaneously.It is easier to compute and the required computation burden is much less than the existing two-stage estimation method.Furthermore,the sieve M-estimation is robust in the presence of outliers if we choose appropriate ρ( ).Under some mild conditions,the estimators are shown to be strongly consistent;the convergence rate of the estimator for the unknown nonparametric component is obtained and the estimator for the unknown parameter is shown to be asymptotically normally distributed.Numerical experiments are carried out to investigate the performance of the proposed method.  相似文献   

10.
In this paper, we study the a posteriori error estimator of SDG method for variable coefficients time-harmonic Maxwell's equations. We propose two a posteriori error estimators, one is the recovery-type estimator, and the other is the residual-type estimator. We first propose the curl-recovery method for the staggered discontinuous Galerkin method (SDGM), and based on the super-convergence result of the postprocessed solution, an asymptotically exact error estimator is constructed. The residual-type a posteriori error estimator is also proposed, and it's reliability and effectiveness are proved for variable coefficients time-harmonic Maxwell's equations. The efficiency and robustness of the proposed estimators is demonstrated by the numerical experiments.  相似文献   

11.
In this article a strategy of adaptive finite element for semi-linear problems, based on minimizing a residual-type estimator, is reported. We get an a posteriori error estimate which is asymptotically exact when the mesh size h tends to zero. By considering a model problem, the quality of this estimator is checked. It is numerically shown that without constraint on the mesh size h, the efficiency of the a posteriori error estimate can fail dramatically. This phenomenon is analysed and an algorithm which equidistributes the local estimators under the constraint h ⩽ h max is proposed. This algorithm allows to improve the computed solution for semi-linear convection–diffusion problems, and can be used for stabilizing the Lagrange finite element method for linear convection–diffusion problems. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
We consider a panel data semiparametric partially linear regression model with an unknown vector β of regression coefficients, an unknown nonparametric function g(·) for nonlinear component, and unobservable serially correlated errors. The correlated errors are modeled by a vector autoregressive process which involves a constant intraclass correlation. Applying the pilot estimators of β and g(·), we construct estimators of the autoregressive coefficients, the intraclass correlation and the error variance, and investigate their asymptotic properties. Fitting the error structure results in a new semiparametric two-step estimator of β, which is shown to be asymptotically more efficient than the usual semiparametric least squares estimator in terms of asymptotic covariance matrix. Asymptotic normality of this new estimator is established, and a consistent estimator of its asymptotic covariance matrix is presented. Furthermore, a corresponding estimator of g(·) is also provided. These results can be used to make asymptotically efficient statistical inference. Some simulation studies are conducted to illustrate the finite sample performances of these proposed estimators.  相似文献   

13.
Adaptive refinement techniques are developed in this paper for the meshless Galerkin boundary node method for hypersingular boundary integral equations. Two types of error estimators are derived. One is a perturbation error estimator that is formulated based on the difference between numerical solutions obtained using two consecutive nodal arrangements. The other is a projection error estimator that is formulated based on the difference between the numerical solution itself and its projection. These error estimators are proven to have an upper and a lower bound by the constant multiples of the exact error in the energy norm. A localization scheme is presented to accomodate the non-local property of hypersingular integral operators for the needed computable local error indicators. The convergence of the adaptive meshless techniques is verified theoretically. To confirm the theoretical results and to show the efficiency of the adaptive techniques, numerical examples in 2D and 3D with high singularities are provided.  相似文献   

14.
本文研究对称椭圆特征值问题的有限元后验误差估计,包括协调元和非协调元,具有下列特色:(1)对协调/非协调元建立了有限元特征函数uh的误差与相应的边值问题有限元解的误差在局部能量模意义下的恒等关系式,该边值问题的右端为有限元特征值λh与uh的乘积,有限元解恰好为uh.从而边值问题有限元解在能量模意义下的局部后验误差指示子,包括残差型和重构型后验误差指示子,成为有限元特征函数在能量模意义下的局部后验误差指示子.(2)讨论了协调有限元特征函数的基于插值后处理的梯度重构型后验误差估计,对有限元特征函数的导数得到了最大模意义下的渐近准确局部后验误差指示子.  相似文献   

15.
Differenced estimators of variance bypass the estimation of regression function and thus are simple to calculate. However, there exist two problems: most differenced estimators do not achieve the asymptotic optimal rate for the mean square error; for finite samples the estimation bias is also important and not further considered. In this paper, we estimate the variance as the intercept in a linear regression with the lagged Gasser-type variance estimator as dependent variable. For the equidistant design, our estimator is not only \(n^{1/2}\)-consistent and asymptotically normal, but also achieves the optimal bound in terms of estimation variance with less asymptotic bias. Simulation studies show that our estimator has less mean square error than some existing differenced estimators, especially in the cases of immense oscillation of regression function and small-sized sample.  相似文献   

16.
This article considers a semiparametric varying-coefficient partially linear regression model with current status data. The semiparametric varying-coefficient partially linear regression model which is a generalization of the partially linear regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable. A Sieve maximum likelihood estimation method is proposed and the asymptotic properties of the proposed estimators are discussed. Under some mild conditions, the estimators are shown to be strongly consistent. The convergence rate of the estimator for the unknown smooth function is obtained and the estimator for the unknown parameter is shown to be asymptotically efficient and normally distributed. Simulation studies are conducted to examine the small-sample properties of the proposed estimates and a real dataset is used to illustrate our approach.  相似文献   

17.
This paper considers a robust filtering problem for a linear discrete time invariant system with measured and estimated outputs. The system is exposed to random disturbances with imprecisely known distributions generated by an unknown stable shaping filter from the Gaussian white noise. The stochastic uncertainty of the input disturbance is measured by the mean anisotropy functional. The estimation error is quantified by the anisotropic norm which is a stochastic analogue of the H norm. A sufficient condition for an estimator to exist and ensure that the error is less than a given threshold value is derived in form of a convex inequality on the determinant of a positive definite matrix and two linear matrix inequalities. The suboptimal problem setting results to a set of the estimators ensuring the anisotropic norm of the error to be strictly bounded thereby providing some additional degree of freedom to impose some additional constraints on the estimator performance specification.  相似文献   

18.
To estimate the dispersion of an M-estimator computed using Newton's iterative method, the jackknife method usually requires to repeat the iterative process n times, where n is the sample size. To simplify the computation, one-step jackknife estimators, which require no iteration, are proposed in this paper. Asymptotic properties of the one-step jackknife estimators are obtained under some regularity conditions in the i.i.d. case and in a linear or nonlinear model. All the one-step jackknife estimators are shown to be asymptotically equivalent and they are also asymptotically equivalent to the original jackknife estimator. Hence one may use a dispersion estimator whose computation is the simplest. Finite sample properties of several one-step jackknife estimators are examined in a simulation study.The research was supported by Natural Sciences and Engineering Research Council of Canada.  相似文献   

19.
In this paper, we consider the partial linear model with the covariables missing at random. A model calibration approach and a weighting approach are developed to define the estimators of the parametric and nonparametric parts in the partial linear model, respectively. It is shown that the estimators for the parametric part are asymptotically normal and the estimators of g(·) converge to g(·) with an optimal convergent rate. Also, a comparison between the proposed estimators and the complete case estimator is made. A simulation study is conducted to compare the finite sample behaviors of these estimators based on bias and standard error.  相似文献   

20.
Hazard function estimation is an important part of survival analysis. Interest often centers on estimating the hazard function associated with a particular cause of death. We propose three nonparametric kernel estimators for the hazard function, all of which are appropriate when death times are subject to random censorship and censoring indicators can be missing at random. Specifically, we present a regression surrogate estimator, an imputation estimator, and an inverse probability weighted estimator. All three estimators are uniformly strongly consistent and asymptotically normal. We derive asymptotic representations of the mean squared error and the mean integrated squared error for these estimators and we discuss a data-driven bandwidth selection method. A simulation study, conducted to assess finite sample behavior, demonstrates that the proposed hazard estimators perform relatively well. We illustrate our methods with an analysis of some vascular disease data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号