首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present new electron energy-loss spectroscopy (EELS) and Auger (AES) experiments aimed to study the structural transition of the Ge(111) surface taking place at high temperatures. Our advanced high-temperature set-up allowed us to collect accurate EELS spectra near the M2,3 excitation edges and AES MMV and MVV spectra, corresponding to different probing depths ranging from 4 to 10 Å. The metallization of the surface has been clearly detected by the shift of the M2,3 edge and of the MMV, MVV Auger energies. A detailed study of the transition has been performed using a fine temperature step under thermal equilibrium conditions. The AES and EELS experiments show that a sudden semiconductor-metal transition takes place at about 1000 K involving mainly the topmost layers. Deeper layers within 10 Å are also involved in the metallization process (in a range of 10 above 1010 K) and a smooth change in the topmost layers is also observed at higher temperatures up to 1070 K. These transitions are not fully reversible upon cooling (down to 870 K). Structural and electronic characteristics of the surface transition are discussed in light of available models.  相似文献   

2.
《Surface science》1986,167(1):207-230
A unified electron spectroscopic study of polycrystalline Ti and its interaction with H2, O2, N2, and NH3 are described. Auger electron spectroscopy (AES), electron energy-loss spectroscopy (ELS), ultraviolet and X-ray photoelectron spectroscopy (UPS and XPS) are combined to provide detailed information about the electronic structure of the titanium surface and its interaction with these adsorbates. X-ray and ultraviolet photoelectron spectra and electron energy-loss spectra are presented for the clean titanium surface, and following exposure to H2, O2, N2 and NH3. Spectral assignments are provided in each case. The electron spectra of oxygen exposed Ti and nitrogen sputtered Ti are quite similar, and are interpreted with reference to band structure calculations for TiO and TiN. Electron spectroscopy indicates essentially complete dissociative adsorption of NH3 on the clean titanium surface.  相似文献   

3.
The Auger and electron energy loss spectra (EELS) of a grain boundary fracture plane of bicrystal molybdenum (32 wt.ppm oxygen) are compared with the spectra of pure and oxidized molybdenum. The Auger spectrum of the fracture surface contains molybdenum and oxygen peaks, and the Mo M4,5NN line coincides with that of the pure metal. The interfacial Auger transition peak is observed on the low energy side of the Mo N2,3VV Auger peak. Both AES and EELS spectra of the fracture plane are different from those of the oxidized molydenum. These results show that the segregated oxygen is bound to the grain boundary fracture plane as if it were adsorbed.  相似文献   

4.
《Surface science》1997,380(1):L459-L462
The formation and properties of ultra-thin GaN films were investigated by means of high-resolution electron energy-loss spectroscopy (EELS) and Auger electron spectroscopy (AES). Using the intermetallic alloy CoGa as the substrate material, GaN can be prepared on the (001) surface upon adsorption of ammonia at 80 K and subsequent thermal decomposition. Ultra-thin GaN films were grown by repeated cycles of ammonia adsorption and heating to 650 K. The GaN films show an FK mode at 695 cm−1, in agreement with calculated spectra based on IR parameters. The electronic energy gap is determined to be Eg ≈ 3.5 eV.  相似文献   

5.
A series of different TiNx thin films were grown by PLD. The purpose for this work was to study through the AES interpretation, how the different conditions of the partial pressure of N inside the chamber during the growing of these thin films, affects the stoichiometry of the TiNx deposited. The results obtained were that the different thin films change each one through TiNx (x = 0.88-1.33). The results were supported with XPS and EELS spectroscopy doing also an analysis of elemental ratio to show the stoichiometry and sub-stoichiometry obtained. This work concludes the adequate conditions for this experiment to obtain TiN as thin film by PLD at room temperature, supported with the results in the present work and the interpretation of the AES spectra even when Ti and N peaks overlap.  相似文献   

6.
Auger (AES) and X-ray photoelectron spectroscopic (XPS) characterizations of electrochemically oxidized titanium are described. Surface oxides on thin (200–250 Å) vacuum deposited titanium films were formed under conditions of linear potential scan in 1 N KClO4, 1 N HClO4 and 1 N H2SO4. Current/voltage, capacitance/voltage and surface conductance/voltage relationships confirmed the irreversible formation of the surface oxide at thickness of 20–30 Å/V, for low applied potentials. Post moretem analysis of the thin films by AES and XPS indicated a mixture of metal and metal oxides (TiO2, Ti2O3, TiO) on each surface, with the higher oxide states predominating on the electrochemically oxidized films. Observation of the LIIIM2,3M4,5, N(E) signal shape in the Auger spectra of the potentially oxidized oxidized films showed a suboxide TiO-like surface rather than an TiO2 surface state. Deconvolution of the Ti(2p12, 32) XPS spectra confirmed the coexistence of multiple oxidation states of Ti during electrochemical or atmospheric oxidation of the films. Ion sputtering of each surface was used to characterize the subsurface metal/metal oxide composition and to correlate the oxygen to metal atomic ratio with electrochemical pretreatment.  相似文献   

7.
A theoretical model is proposed on how a Si dangling bond associated with an oxygen vacancy on a SiO2 surface (Es′ center) should be observed by Auger electron spectroscopy (AES). The Auger electron distribution NA(E) for the L23VV transition band is calculated for a stoichiometric SiO2 surface, and for a SiOx surface containing Si-(e?O3) coordinations. The latter is characterized by an additional L23VD transition band, where D is the energy level of the unpaired electron e?. The theoretical NA(E) spectra are compared with experimental N(E) spectra for a pristine, and for an electron radiation damaged quartz surface. Agreement with the theoretical model is obtained if D is assumed to lie ≈2 eV below the conduction band edge. This result shows that AES is uniquely useful in revealing the absolute energy level of localized, occupied surface defect states. As the L23VD transition band (main peak at 86 eV) cannot unambiguously be distinguished from a SiSi4 coordination L23VV spectrum (main peak at 88 eV), supporting evidence is presented as to why we exclude a SiSi4 coordination for our particular experimental example. Application of the Si-(e?O3) model to the interpretation of SiO2Si interface Auger spectra is also discussed.  相似文献   

8.
The capability of Auger transition probabilities experimentally derived from X-ray excited Auger electron spectra in XPS were tested. The relative sensitivity factor (RSF) method has been employed in the quantification by AES (Electron excited Auger electron spectroscopy). However, the difference between experimentally derived RSF and theoretically calculated ones has been found in some reports. One of the great reason of the difference may be caused by the calculated values of the Auger transition yield which has been commonly employed without the consideration of the allotment of coupling scheme in the transition selected in the quantification, for instance, the allotment of each six coupling KL1L1, KL1L2, KL1L3, KL2L2, KL2L3, and KL3L3 in KLL transition. The employment of derived Auger transition probabilities reduce the difference between theoretically calculated RSF and experimentally derived one.  相似文献   

9.
Diamond-like carbon (DLC) films doped with nitrogen and oxygen were deposited on silicon(100) and polytetrafluoroethylene (PTFE) substrates by hot wire plasma sputtering of graphite. The morphology and chemical composition of deposited films has been characterized by scanning electron microscopy, XPS, Auger, FTIR spectroscopy and micro-Raman scattering. Plasmon loss structure accompanying the XPS C 1s peak and electron energy loss spectroscopy (EELS) in reflection mode was used to study the fraction of sp3 bonded C atoms and the density of valence electrons. Raman spectra show two basic C–C bands around 1575 cm-1 (G line) and 1360 cm-1 (D line) . Auger depth profiling spectroscopy was used to measure the spatial distributions of C, N and O atoms in the surface layer of DLC films. The fraction of sp3 bonded atoms of about 40% was detected in DLC films by XPS plasmon loss and EELS techniques. Nitrile and iso-nitrile groups observed in FTIR spectra demonstrated the existence of sp bonded carbon in doped DLC films. The typical for DLC films specific density 1.7–1.8 g/cm3 was obtained from EELS and XPS data. PACS 52.77.Dq; 81.65.-b; 82.80.Pv  相似文献   

10.
Auger electron Spectroscopy (AES) and slow electron energy loss Spectroscopy (SEELS) have been employed to study the electronic structure of Ti, TiSi2 and TiO2. The changes in the Auger and loss spectra when Ti chemically binds with silicon to form TiSi2 and with oxygen to form TiO2 have been understood as manifestations of changes in electronic participation. AES spectra show distinct changes in line shapes of transitions involving the Ti valence electrons. The SEELS spectra provide information regarding shallow core levels, valence band and the collective excitation energies of the volume and surface plasmons. By monitoring the changes in the Auger peak at 387 eV and the 3p→ 3d quasiatomic transition (at about 45 eV), the role of d-orbital occupancies are studied in Ti and its compounds. The SEELS studies in the 0-80 eV range have enabled the authors to observe the behaviour of the 3p → 3d quasiatomic transition in Ti, which persists after oxidation but almost disappears during TiSi2 formation. The values of the plasmon losses are related to the collective behaviour of conduction electrons.  相似文献   

11.
Auger electron spectra have been recorded when oxygen is adsorbed on a Ni(111) single crystal surface. For the coverage range θ < 1, an analysis of the plot of the peak to peak height (H) of the oxygen KVV (516 eV) transition versus the total number of molecules cm2? impinging on the surface (molecular beam dosing) shows agreement with the kinetic mechanism proposed by Morgan and King [Surface Sci. 23 (1970) 259] for the adsorption of oxygen on polycrystalline nickel films. In this coverage range, no energy shifts of the nickel or oxygen Auger peaks were recorded.At coverages θ > 1 (standard dosing procedure) shifts in the valence spectra M2, 3VV (61 eV) and L3M2, 3V (782 eV) of ?2.3 eV and ?1.8eV respectively are recorded at 1.4 × 10?2 torr-sec. Up to these coverages no shift of the L3VV transition (849 eV) is observed. A chemical shift of ?2.1 eV is recorded in the L3M2, 3M2, 3 Auger transition (716 eV) at 1.4 × 10?2 torr-sec.In the coverage range θ > 1, shifts in the energy of the oxygen Auger peaks are observed. At 5.8 × 10?3 torr-sec. the KVV (516 eV) and KL1V (495.2 ± 0.3 eV) transitions show shifts of ?1.5 eV and ?(1.0 ±0.3) eV respectively. No shift up to this coverage is recorded in the KL1L1 (480.6 ± 0.3 eV) transition.  相似文献   

12.
High-energy X-ray photoelectron spectroscopy (XPS) is of particular importance for minimizing the effects of surface contamination by increasing photoelectron escape depths. In this study high-resolution high-energy Cu Kα1 and soft Al Kα1 XPS and Auger electron spectroscopy were used to compare the electronic structure of Ti in TiO2 powder and Ti metal. The Ti 1s in TiO2 XPS line is narrower and more symmetric than in Ti metal. A comparison of the relative intensities of the L23M23M45 and L23M23M23 Auger transitions in Ti metal and TiO2 is consistent with the expected transfer of Ti 3d electrons away from the Ti site in the oxide. The satellites accompanying the Ti 1s XPS line excited by Cu Kα1 X-rays occur at the same energies as the satellites accompanying the Ti 2s and 2p XPS lines excited by Al Kα1 X-rays indicating that they do not depend on the core-level, the experimental resolution or inelastic scattering processes.  相似文献   

13.
Auger Electron Spectroscopy (AES) is an analytical technique sensitive to the surface of materials and providing elemental and chemical composition of conductive samples. The excellent spatial resolution and its quantification possibilities, even for light elements, make AES a commonly used technique to investigate surface and interfaces.TiN-like materials have a wide range of applications depending on their stoichiometry, but their composition is still complex (or at least not straightforward) to determine because of a strong overlapping of the Ti LMM with the N KLL Auger transitions. This quantification problem can be circumvented using computerised calculations as target factor analysis (TFA) to estimate the different nitrogen and titanium contributions in this peaks overlap. However, a more simple method, based on the study of Ti LMM and Ti LMV area ratio of pure TiN and TiC reference samples, is described in this paper and can be used to obtain the atomic composition of any titanium nitride based compound, whatever the complexity of the material. This method is an alternative to easily quantify TiN-like compounds by AES.As an illustration, a Ti(CxN1−x) based multilayer deposited on a hardmetal substrate was investigated. This quantification method was successfully used to evidence three different layers and the diffusion phenomenon at the interfaces between the layers. This study was completed with a quantitative SIMS depth profile that the high sensitivity and depth resolution allowed to measure the small variations of composition lower than the uncertainty of AES.  相似文献   

14.
Changes in the dielectric properties during the thermochromic transition of commercial VO2 powders were determined in situ, by analyzing the low-loss region of the electron energy-loss spectroscopy (EELS) spectra in a transmission electron microscope at room temperature (insulator phase) and 100 °C (metallic phase). A comparison of experimental EELS spectra and ab initio density-functional theory calculations (WIEN2k code) within the generalized gradient approximation (GGA) is presented. A characteristic peak around 5.6 eV appears in the energy-loss function in metallic phase, which is absent in insulator phase. The origin of the characteristic peak is analyzed by means of energy-band structure calculations.  相似文献   

15.
Cu 2p, Cu 3d and O 1s electron spectra and Cu L3M4,5M4,5 Auger electron spectra from Cu, Cu2O and CuO have been studied at 25°C and at 400°C. The height of the Cu 2p satellite peaks from copper oxides was lowered when the temperature was raised. The intensity of the satellites also decreased if the sample stayed in vacuum for prolonged periods.Two commercial cuprous oxides were different with respect to the behaviour of the satellite peaks. One produced very weak satellites, while the other produced strong ones as previously reported in the literature for cuprous oxide. The colour of the oxides was slightly different, indicating that the stoichiometry was not the same.The change in satellite intensity is accompanied by changes in oxygen spectra, Cu L3M4,5 M4,5 Auger spectra and valence band spectra.It is useful to study Auger electrons in addition to the direct electron spectrum, since Auger signals can be more sensitive to surface conditions than direct electron spectra.  相似文献   

16.
Ti与莫来石陶瓷衬底的界面反应   总被引:2,自引:0,他引:2       下载免费PDF全文
在抛光的200℃莫来石陶瓷衬底上电子束蒸发淀积200nm的Ti膜,并在高真空中退火,利用二次离子质谱(SIMS)、俄歇电子能谱(AES)和X射线衍射分析(XRD)研究了从200—650℃Ti与莫来石的固相界面反应.结果表明,在淀积过程中,最初淀积的Ti与衬底表面的氧形成Ti—O键,并有微量元素态Al,Si原子析出,界面区很窄;450℃,1h退火后,界面区有所展宽,但变化不大;650℃,1h退火后,界面发生强烈反应,样品主要由TiO+Ti,Ti3Al,Ti3Al+TiSi2和莫来石陶瓷衬底四层结构组成 关键词:  相似文献   

17.
Part of the LMM Auger spectrum from metallic copper has been studied in a high resolution X-ray photoelectron spectrometer. Fine structure not earlier reported has been observed. The main L3M4,5M4,5 peak is very narrow, 1.0 eV, although the valence band is involved in the transition. The agreement between experimental and calculated Auger electron energies is very good. Since fine structure is found to be an intrinsic property in Auger spectra the interpretation of “satellite” peaks as due to electron—plasmon interactions should be used with care. The L3M4,5M4,5 peak is very sensitive to the copper surface conditions. Surface oxygen affects the peak in a characteristic way.  相似文献   

18.
E.W. Niu 《Applied Surface Science》2008,254(13):3909-3914
Ti-Zr-N (multi-phase) films were prepared by cathodic vacuum arc technique with different substrate bias (0 to −500 V), using Ti and Zr plasma flows in residual N2 atmosphere. It was found that the microstructure and mechanical properties of the composite films are strongly dependent on the deposition parameters. All the films studied in this paper are composed of ZrN, TiN, and TiZrN ternary phases. The grains change from equiaxial to columnar and exhibit preferred orientation as a function of substrate bias. With the increase of substrate bias the atomic ratio of Ti to Zr elements keeps almost constant, while the N to (Ti + Zr) ratio increases to about 1.1. The composite films present an enhanced nanohardness compared with the binary TiN and ZrN films deposited under the same condition. The film deposited with bias of −300 V possesses the maximum scratch critical load (Lc).  相似文献   

19.
TiN thin films were grown on stainless steel substrates by using the reactive radio-frequency magnetron-sputtering technique at relatively low temperature (200°C) using Ti and N2. The deposition rate of the TiN film increased linearly with increasing applied radio-frequency power, and it decreased with increasing partial-pressure ratio of the N2 gas to the Ar gas. Scanning electron microscopy (SEM) showed that the surfaces of the TiN films had very smooth morphologies. The TiN thin film had good stoichiometry for a partial-pressure ratio of 0.05. The stoichiometry of the TiN films and the interface qualities of the TiN/stainless steel heterostructures were investigated by Auger electron spectroscopy (AES) measurements. Auger depth profiles indicated that the compositions of the as-grown films consisted of titanium and nitrogen uniformly distributed throughout the films and that the films exhibited smooth interfaces. The interface quality of the TiN films to the stainless steel substrates were improved by annealing. These results indicate that annealed TiN thin films grown on stainless steel substrates hold promise for potential applications in advanced ceramic devices.  相似文献   

20.
《Surface science》1986,167(1):27-38
The initial stage of adsorption of Pd on a Si(111)7 × 7 surface has been studied by means of Auger electron spectroscopy (AES), electron energy loss spectroscopy (EELS) and surface work-function change. For Pd deposition at room temperature (RT) the Si(LVV) Auger signal intensity decays in a broken linear line. The structure factor, defined as the intensity ratio of the subpeak to the main one in Si(LVV) Auger spectra, increases up to a maximum around one monolayer coverages. In EELS spectra two peaks, characteristics of Pd, appear at the completion of the first Pd layer. Pd atoms deposited on Si(111) at RT form initially flat layers of a few monolayers height without mixing with substrate Si atoms. For Pd deposition at a moderately high temperature (MT) of about 300°C, however, the structure factor for Si(LVV) Auger spectra does not change. EELS peaks, characteristic of Si substrate, remain clearly even beyond one monolayer coverage. Pd atoms deposited at MT are unstable and easily diffuse into the bulk. We present evidences to support the “screening” model for the bond-breaking mechanism at the Pd/Si interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号