首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Critical flux concept for microfiltration fouling   总被引:41,自引:0,他引:41  
Several constant-flux filtration experiments for yeast cell suspensions, yeast cell debris, and dodecane-water emulsion were performed at various operating conditions in both flat-sheet and tubular-membrane systems. The aim of the paper is two-fold. Firstly the relationship between constant-flux behaviour and membrane fouling is discussed. In some cases constant-flux filtration was realized at a constant transmembrane pressure which was below a critical value. In general constant-flux filtration was obtained with moderately increasing transmembrane pressure, and this approach is shown to have some advantages over normal constant-pressure filtration because it clearly provides for the possibility of avoiding over-fouling and so reduces the severity of fouling. Secondly, the concept of critical flux is introduced. Whilst it has long been recognised that low-pressure microfiltration is much more effective than high-pressure microfiltration, the emphasis in this work is upon the possible existence of a critical flux and the desirability of starting filtration operations at a low flux. The critical-flux hypothesis is that on start-up there exists a flux below which a decline of flux with time does not occur. Equations which may enable identification of the appropriate flux level are included.  相似文献   

2.
Effect of backpulsing on crossflow filtration of different process streams was studied. Laboratory scale experiments were conducted with synthetic electroplating wastewater containing Cr(OH)3 suspension. Porous ceramic membranes of various pore sizes (0.05–5.0 μm) were evaluated. Filtration experiments with and without backpulsing show that backpulsing is effective in minimizing membrane fouling. Up to five-fold increase in steady-state permeate flux and 100% flux recovery were observed. Theoretical aspects are reviewed to develop a better understanding of the critical parameters associated with high-pressure backpulsing.Pilot and commercial scale operating results on several industrial applications, such as yeast filtration, process slurry filtration and oily wastewater filtration are presented. Data analysis shows the critical importance of backpulsing in reducing long-term membrane fouling while allowing the realization of high product recovery. Optimization of process parameters with backpulsing typically results in higher flux and reduces the total capital cost required to achieve the desired production rate.  相似文献   

3.
Rapid backpulsing to reduce membrane fouling during crossflow microfiltration and ultrafiltration is studied by solving the convection-diffusion equation for concentration polarization and depolarization during cyclic operation with transmembrane pressure reversal. For a fixed duration of reverse filtration, there is a critical duration of forward filtration which must not be exceeded if the formation of a cake or gel layer on the membrane surface is to be avoided. The theory also predicts an optimum duration of forward filtration which maximizes the net flux, since backpulsing at too high of frequency does not allow for adequate permeate collection during forward filtration relative to that lost during reverse filtration, whereas backpulsing at too low of frequency results in significant flux decline due to cake or gel buildup during each period of forward filtration. In general, short backpulse durations, low feed concentrations, high shear rates, and high forward transmembrane pressures give the highest net fluxes, whereas the magnitude of the reverse transmembrane pressure has a relatively small effect.Rapid backpulsing experiments with yeast suspended in deionized water performed with a flat-sheet crossflow microfiltration module and cellulose acetate membranes with 0.07 μm average pore diameter. The optimum forward filtration times were found to be 1.5, 3, and 5 s, respectively, for backpulse durations of 0.1, 0.2, and 0.3 s. Both theory and experiment gave net fluxes with backpulsing of about 85% of the clean membrane flux (0.022 cm/s = 790 l/m2 h), whereas the long-term flux in the absence of backpulsing is an order-of-magnitude lower (0.0026 cm/s = 94 l/m2 h).  相似文献   

4.
A new control algorithm for performing filtration in a membrane sequencing batch reactor (MSBR) to prevent fouling is presented. Based on continuous measurements of the transmembrane pressure (TMP) and the permeate flux, the algorithm decides when to initiate backwashing. The algorithm was tested on a laboratory scale bioreactor treating synthetic wastewater containing 4-chlorophenol (4CP) as model toxic compound and filtration was carried out using a submerged tubular membrane module and a diaphragm pump. Several controller configurations were tested for different MSBR cycles. The results showed that the proposed algorithm was robust against the highly varying mixed liquor characteristics and was able to keep the TMP below critical values and maintain the flux at a maximum for most of the filtration time. Therefore, despite possible frequent backwashes, the total filtration time was minimized.  相似文献   

5.
The main limitation of the ultrafiltration (UF) process identified in drinking water treatment is membrane fouling. Although adsorption of natural organic matter (NOM) is known to cause irreversible fouling, operating conditions also impact the degree of irreversible fouling. This study examined the impact of several operating parameters on fouling including flux, concentrate velocity in hollow fibers, backwash frequency, and transmembrane pressure. A hydrophilic cellulose derivative membrane and a hydrophobic acrylic polymer membrane were used to conduct these tests. Pilot testing showed that when short-term reversible fouling was limited during a filtration cycle by increasing the concentrate velocity, reducing the flux, and increasing the backwash frequency, the evolution of the membrane toward irreversible fouling could be controlled. It appeared that operating parameters should be adjusted to maintain the increase of transmembrane pressure below a certain limit, determined to be approximately 0.85 to 1.0 bar for the tested UF membrane, in order to minimize the rate of irreversible fouling. This threshold for transmembrane pressure was confirmed empirically by compiling data from over 36 pilot studies. Other testing results demonstrated that hydraulic backwash effectiveness decreased as the transmembrane pressure applied in the previous filtration cycle increased. Backwash efficiency in terms of membrane flux recovery after hydraulic backwash was reduced by 50% when the transmembrane pressure was increased from 0.4 bar to 1.4 bar.  相似文献   

6.
7.
This paper investigates the reversibility of membrane fouling by activated sludge in a membrane bioreactor equipped with a 0.1 μm pore ceramic membrane. The membrane was submitted to a series of tests in which the permeate flux, the transmembrane pressure (TMP) or the circulation velocity were successively varied in cycles by step increments or decreases. When the permeate flux is set below the critical flux, the TMP remains stable and fouling is reversible. On the contrary, when the critical flux is exceeded, the TMP increases and does not stabilize, as in dead-end filtration. The fouling formed is partly irreversible when the flux is lowered again. When the TMP is first increased up to 400 kPa and then decreased back at constant velocity, no hysteresis is found on the flux–TMP graph, showing that fouling is reversible in this case. Velocity cycles were performed by first lowering the velocity from 5 to 1 m/s and raising it again to 5 m/s. In this case again, the fouling induced by reducing the velocity was found to be reversible. However, when the same pressure and velocity cycle tests were performed with activated sludge collected in the aeration tank of a classical wastewater treatment plant, fouling was found to be partly irreversible, showing that the cake formed in the absence of shearing is much more cohesive. In the final part of the paper, we tested a hydrodynamic method of fouling control consisting in alternating short periods of filtration (1–4 s) and short periods of washing (1 or 2 s) at low TMP and high velocity. This method yielded to a 20% permeate flux increase with a 10% reduction in hydraulic energy consumption for classical plant activated sludge.  相似文献   

8.
Pretreatment of whey by microfiltration (MF) has emerged as a necessary step in producing high purity whey protein concentrates. In the MF of pretreated whey using a Carbosep M14 membrane (pore diameter 0.14 μm), proteins and calcium phosphate aggregates were responsible for fouling, which increased according to the “complete blocking” filtration law and accounted for a progressive decrease of the active filtering area. An operating mode with dynamic counter pressure (recirculation of the permeate co-current to the retentate), as opposed to static counter pressure, allowed lower overall fouling, a longer time of operation and better protein recovery because of more evenly distributed fouling along the membrane tube. At shorter times of operation, fouling was greater under higher transmembrane pressure (TP), so that the less fouled areas under lower TP were forced to filter larger volumes and consequently became fouled more rapidly. This involved a movement of the effective filtering area along the membrane tube, as evidenced by the systematic evolution of fouling heterogeneity as measured by infra-red spectroscopy.  相似文献   

9.
This paper deals with the influence of a new type of unsteadiness in the flow on the permeate flux in crossflow filtration. A pneumatically controlled valve generates intermittent jets from the main flow leading to the formation of large vortices moving downstream along the tubular membrane. The experimental study was carried out by filtering a bentonite suspension through an ultrafiltration mineral membrane. Flux time measurements were taken under steady and unsteady operating conditions. The unsteadiness leads to a permeate flux more than two times higher than in the usual filtration processes.  相似文献   

10.
A filtration procedure was developed to measure the reversibility of fouling during cross-flow filtration based on the square wave of applied pressure. The principle of this method, the apparatus required, and the associated mathematical relationships are detailed. This method allows for differentiating the reversible accumulation of matter on, and the irreversible fouling of, a membrane surface. Distinguishing these two forms of attachment to a membrane surface provides a means by which the critical flux may be determined. To validate this method, experiments were performed with a latex suspension at different degrees of destabilization (obtained by the addition of salt to the suspension) and at different cross-flow velocities. The dependence of the critical flux on these conditions is discussed and analysed through the osmotic pressure of the colloidal dispersion.  相似文献   

11.
Using the resistance-in-series (RIS) approach to permeate flux modeling, a general relationship between permeate flux, transmembrane pressure, cross-flow velocity, and feed kinematic viscosity was developed for the tubular ultrafiltration (UF) of synthetic oil-in-water emulsions. The fouling layer resistance, Rf, was 63% of the total membrane resistance, Rm′; however, concentration polarization was the predominant factor controlling resistance in the tubular UF system. An explicit form of the resistance index, Φ, was postulated based on the observed interactions between Φ, cross-flow velocity and feed kinematic viscosity and the RIS model was modified to further describe the interactions between permeate flux and operational parameters. The modified model adequately predicted flux–pressure data over the range of experimental variables examined in this study. Additionally, a set point operating pressure was determined as a function of cross-flow velocity and feed viscosity to achieve a balance between polarization and total membrane resistance.  相似文献   

12.
Beer clarification by microfiltration demands a finely balanced retention of colloidal particulates (yeast cells, chill haze flocs, etc.) and transmission of soluble macromolecules including carbohydrates, proteins, flavour, and colour compounds which give the “whole some” quality of a beer. The required porous transmission of these macromolecular species led to an unavoidable, complex and dynamic in-pore membrane fouling in terms of fouling constituents, formation, structure and kinetics, which are the main obstacles in obtaining an economically viable flux and consistency in permeate quality.This experimental study was carried out with the aims of understanding the dynamic inter-relation between flux, fouling and system selectivity during a cross-flow beer microfiltration process so that an effective operating strategy for flux optimisation could be formulated in conjunction with the parallel objective of good product (permeate) quality control. Tubular ceramic membranes (Ceramem) with nominal pore diameters of 0.2, 0.5, and 1.3 μm were used. Simultaneous measurement of flux and permeate qualities, such as specific gravity and chill haze level enabled identification of the effect of anti-fouling techniques, such as backflushing on transmission of essential beer components and on the filtered beer quality. The experimental evidence lead to an understanding that the drastic flux enhancement achieved by employing backflushing at reversed membrane morphology was associated with enhanced solute transmission which could, without careful control, upset a balanced transmission of essential beer components and the retention of unwanted “chill haze” components. Further operating parameters and varying system configurations were investigated over their effect on both flux performance and system selectivity. These include membrane pore size, filtration temperature, and the addition of an amorphous silica particles as coagulation agent for hydrophilic proteins.  相似文献   

13.
This paper discusses a novel approach for predicting permeate flux decline in constant pressure ultrafiltration of protein solutions. A constant pressure process is assumed to be made up of a large number of small, sequential, constant flux ultrafiltration steps: the flux decreasing due to fouling and other related factors at the end of each step. The advantage of this approach is that constant flux ultrafiltration is easier to study, characterize, and model than constant pressure ultrafiltration. Consequently model parameters can be obtained in reliable and reproducible manner. Constant pressure ultrafiltration is dynamic in nature since both the magnitude of osmotic back-pressure and the extent of membrane fouling decrease as the permeate flux decreases with time. The proposed model takes into consideration the interplay between permeate flux, concentration polarization, and membrane fouling. The model demonstrates that the initial rapid flux decline is due to a combination of concentration polarization and membrane fouling while during the remaining part of the process, the effect of concentration polarization becomes negligible. The model also shows that concentration polarization affects the initial flux decline only at higher transmembrane pressures. This model which was validated using experimental data is conceptually simpler than other available models and easy to use. In addition to its value as a predictive tool it would particularly be useful for deciding appropriate start-up conditions in ultrafiltration processes.  相似文献   

14.
A model of the axial and the radial transmembrane pressure drop in a cylindrical cross-flow filtration module was developed by performing a hydrodynamic analysis of the fluid flow based on the momentum and the continuity equations. Use of this expression for the transmembrane pressure drop together with the resistance model and the concept of shear induced diffusion of the particles at the membrane surface resulted in an expression of the permeate flux. The predictions of the transmembrane pressure drop, the permeate flux and the particles near the membrane surface are discussed for cases with and without the formation of a stagnant layer. The importance of the cylindrical membrane fiber dimensions on the permeate flux is also discussed.  相似文献   

15.
The unsteady-state permeate flux response to a step change in transmembrane pressure is shown to result in unique flux–pressure profiles for the three types of solutes common in membrane ultrafiltration (UF): (a) solutes which exert an osmotic pressure but do not form a ‘gel’; (b) solutes which do not exert an osmotic pressure but form a ‘gel’ and (c) solutes which exert an osmotic pressure and also form a ‘gel’. It is also shown that for stirred cell UF, changes in the bulk feed solution properties (concentration, volume) are negligible on the time scale needed to attain a stable permeate flux. Unsteady-state permeate flux measurements could therefore be made at short filtration times so that the results would not be masked by changes in bulk properties.  相似文献   

16.
Cross-flow ultrafiltration and microfiltration have been used to recover refined soy sauce from soy sauce lees for over 25 years. The precise mechanism which dominated the permeate flux during batch cross-flow filtration has not been clarified. In the present study, we proposed a modified analytical method incorporated with the concept of deadend filtration to determine the initial flux of cross-flow filtration and carried out the permeate recycle and batch cross-flow filtration experiments using soy sauce lees. We used UF and MF flat membrane (0.006 m2 polysulfone) module under different transmembrane pressures (TMP) and cross-flow velocities. The modified analysis provided an accurate prediction of permeate flux during the filtration of soy sauce lees, because this model can consider the change in J0 at initial stage of filtration which was caused by the pore constriction and plugging inside membrane, and these changes may not proceed when the cake was formed on the membrane surface. Mean specific resistance of the cake increased with TMP due to the compaction of the cake and decreased with cross-flow velocity due to the change of deposited particle size, but less depended on the membrane in the present study. These results indicate that the value of J0 determined by modified method was relevant to exclude the effects of the initial membrane fouling by pore constriction due to protein adsorption and plugging with small particles. The modified analytical method for the cake filtration developed in the present study was considered to be capable of selecting an appropriate operating conditions for many cross-flow filtration systems with UF, MF membranes.  相似文献   

17.
The effects of yeast cells on membrane fouling by a protein mixture were studied in dead-end filtration. A 0.2 μm cellulose acetate membrane was used with a 1 g/l protein mixture consisting of equal amounts of bovine serum albumin, lysozyme, and ovalbumin. Yeast cells were used either in suspension or as preformed yeast cakes on top of the membrane. A small concentration of 0.022 g/l yeast cells in suspension enhanced the permeate flux and maintained protein transmission at nearly 100%, compared with a 60% reduction in the protein concentration in the permeate obtained after 3 h for the protein mixture filtered alone. Higher suspended yeast concentrations of 0.043 and 0.18 g/l resulted in lower fluxes and intermediate values for the protein transmission. For the three different thicknesses of preformed yeast cakes studied (0.025, 0.05, and 0.10 cm), the cake with intermediate thickness resulted in protein transmission of nearly 100% and the highest permeate flux. The thinner yeast cake resulted in a lower permeate flux, but it maintained protein transmission at nearly 100%, whereas the thicker cake resulted in a reduction in both permeate flux and protein transmission. The mechanism proposed to explain the results is based on the formation of a secondary membrane by the yeast cells on top of the original membrane. This secondary membrane entraps protein aggregates, which would otherwise cause membrane fouling and reductions in permeate flux and protein transmission.  相似文献   

18.
High molar mass polysaccharides (locust bean gum and karaya gum) and effluents from a mechanical pulp mill and a paper mill were nanofiltered with commercially available nanofiltration (NF) membranes. The effect of the filtration conditions on the flux (critical flux), retention, and the fouling of the membranes was studied. The experiments were conducted by increasing and decreasing the pressure and measuring the flux thus obtained.

The critical flux was observed to increase with increasing flow velocity and decreasing concentration. An increase in pH increased the electrostatic repulsion between the membrane and the dissociated (charged) components in the paper mill effluents. As a result, a higher critical flux was obtained and also the retentions of the charged substances improved. Only a weak form of the critical flux was observed with the mill effluents. The permeate flux deviated from the pure water flux even at the lowest pressure, but increased linearly with pressure until the weak form of the critical flux was exceeded. The small decrease in flux immediately after filtration was started was probably caused by the plugging of the free spaces in the membranes or by the adsorption of foulants onto the membrane surface.

In the filtrations with the high molar mass polysaccharides, a strong form of the critical flux as well as a weak form were observed. The significant irreversible fouling of the most hydrophobic membrane was due to adsorption of the model substances by hydrophobic interaction. A precleaning of the membranes with an alkaline cleaning agent improved the pure water fluxes by up to 30%, but it had only a small effect on the critical or the limiting flux. The pure water fluxes of precleaned membranes after filtration were still higher than the pure water fluxes of the untreated membranes before filtration.  相似文献   


19.
This paper investigates the ultrafiltration of albumin-ethanol solutions on polysulfone hollow fiber membranes with 30 kDa cut-off. The aim is to identify the mechanisms responsible for the observed permeate flux reduction in presence of ethanol. The variations of permeate flux with transmembrane pressure and wall shear rate fit the usual pattern of flux limitation by concentration polarization. Thus, although ethanol significantly increases the permeate viscosity, the data show that the flux decrease is not a direct consequence of the viscosity increase but rather due to reduced albumin diffusivity which decreases the back transport to the bulk solution. The specific resistance of the albumin layer on the membrane was found to be unaffected by the presence of ethanol. However the fouling potential of our solutions was found to be significantly increased by the addition of ethanol. Thus the observed flux reduction due to ethanol seems to be explained by a combination of a thicker polarization layer caused by reduced back transport and increased membrane fouling. A 10% increase in filtrated volume can be obtained by imposing periodic retrofiltrations which decrease fouling.  相似文献   

20.
Two α-alumina ceramic membranes (0.2 and 0.8 μm pore sizes) and a surface-modified polyacrylonitrile membrane (0.1 μm pore size) were tested with an oily water, containing various concentrations (250–1000 ppm) of heavy crude oil droplets of 1–10 μm diameter. Significant fouling and flux decline were observed. Typical final flux values (at the end of experiments with 2 h of filtration) for membranes at 250 ppm oil in the feed are ≈30–40 kg m−2 h−1. Increased oil concentrations in the feed decreased the final flux, whereas the crossflow rate, transmembrane pressure, and temperature appeared to have relatively little effect on the final flux. In all cases, the permeate was of very high quality, containing <6 ppm total hydrocarbons. The addition of suspended solids increased the final membrane flux by one order of magnitude. It is thought that the suspended solids adsorb the oil, break up the oil layer, and act as a dynamic or secondary membrane which reduces fouling of the underlying primary membrane. Resistance models were used to characterize the type of fouling that occurs. Both the 0.2 μm and the 0.8 μm ceramic membranes appeared to exhibit internal fouling followed by external fouling, whereas external fouling characterized the behavior of the 0.1 μm polymer membrane from the beginning of filtration. Examination of the external fouling layer showed a very thin hydrophobic oil layer adsorbed to the membrane surface. This oil layer made the membrane surface hydrophobic, as demonstrated by increased water-contact angles. The oil layer proved resistant to removal by hydrodynamic (shear) methods. By extracting the oil layer with tetrachloroethylene, followed by IR analysis, its average thickness at the end of a 2 h experiment under typical conditions was determined to be 60 μm for the 0.2 μm ceramic membrane and 30 μm for the 0.1 μm polymer membrane. These measured amounts of oil associated with the membrane at the end of the experiments are in good agreement with those determined from a simple mass balance, in which it is assumed that all of the oil associated with the permeate collected is retained on or in the membrane, indicating that the tangential flow did not sweep the rejected oil layer to the filter exit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号