首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lu CY  Yan XP 《Electrophoresis》2005,26(1):155-160
A new method for speciation analysis of two inorganic selenium species was developed by on-line coupling of capillary electrophoresis (CE) with hydride generation-atomic fluorescence spectrometry (HG-AFS) and on-line conversion of Se(VI) to Se(IV). Baseline separation of Se(VI) and Se(IV) was achieved by CE in a 50 cm x 75 microm inside diameter (ID) fused-silica capillary at -20 kV using a mixture of 15 mmol.L(-1) NaH2PO4 and 0.5 mmol.L(-1) cetyltrimethylammonium bromide (pH 7.5) as electrolyte buffer. Se(VI) was on-line reduced to Se(IV) by mixing the CE effluent with concentrated HCl. The precision (relative standard deviation, RSD, n=7) ranged from 0.7 to 1.3% for migration time, 6.4 to 3.7% for peak height response, and 5.9 to 6.1% for peak area for the two selenium species at the 500 microg.L(-1) (as Se) level. The detection limits were 33 and 25 microg.L(-1) (as Se) for Se(VI) and Se(IV), respectively. The recoveries of the two selenium species in five locally collected water samples ranged from 88 to 114%. The developed method was applied to speciation analysis of inorganic selenium species in spiked natural water samples.  相似文献   

2.
The simultaneous determination of As(III), As(V), monomethylarsenic acid (MMA), dimethylarsinic acid (DMA) and Cr(VI) in fresh water has been carried out by coupling an anion-exchange column to an inductively coupled plasma-mass spectrometer. Optimisation of chromatographic conditions led to baseline separation of signals from the five species in approximately 9 min using gradient elution. Detection limits were 0.02-0.05 microg As l(-1) and 5.5 microg Cr l(-1). Repeatability was 2-3% for arsenic species and higher, i.e., 8%, for Cr(VI) due to the higher background for this species. Arsenic species and hexavalent chromium stability in surface water samples was evaluated, and storage conditions were set to 1 day at 4 degrees C in polyethylene flasks (without acidification) in order to avoid As(III)-As(V) conversions. The method was applied to the analysis of surface water.  相似文献   

3.
A method has been developed for the determination of zinc pyrithione (ZnPT) in environmental water samples using monolithic reversed-phase silica columns for rapid on-line large volume solid phase extraction in tandem with on-line matrix removal using sacrificial strong anion exchange (SAX) columns. This is coupled with reversed-phase liquid chromatography with atmospheric pressure chemical ionisation mass spectrometric detection. Limits of detection in spiked river water samples, using a 200 mL preconcentration volume, were determined as 18 ng L(-1), with a limit of quantitation of 62 ng L(-1). The percentage recovery from spiked river water was found to be 72+/-9 (n=3 extractions), whilst overall method precision, following 10 repeat complete analyses was found to be 27% RSD at 1 microg L(-1). Linearity was determined over the concentration range of 0.25-10 microg L(-1) and the calculated regression coefficient was R(2)=0.9802. The method was used to investigate the environmental fate of zinc pyrithione in waters and its partition coefficient between sediment and water phases.  相似文献   

4.
The development of an analytical methodology for the specific determination of arsenite, arsenate and the organic species monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), is described. The method is based on an ion chromatographic separation, coupled on-line to post-column generation of the gaseous hydrides by reaction with sodium tetrahydroborate in acidic medium. Detection and measurement were performed by inductively coupled plasma spectrometry operated in the atomic emission mode. Arsenic emission was monitored at 193.7 nm. Different types and sizes of anion-exchange columns, silica and polymeric, were tested using EDTA as eluent. Composition, acidity and flow-rate of the mobile phase were optimized in order to obtain the required resolution. Complete elution and resolution of the four species was achieved in about 6 min. Linear calibration curves were obtained in the 0.05-2 microg ml(-1) range for As(III), As(V) and MMA, and between 0.1 and 2.0 microg ml(-1) for DMA. The absolute limits of detection for 200-microl sample injections were in the ng range, with DMA the compound measured with less sensitivity. Results of the analyses of natural samples, such as river and ground waters spiked with the studied species, suggested that analyte recoveries might be dependent on the sample composition.  相似文献   

5.
This paper describes the first approach that simultaneously quantifies four polar, water-soluble organophosphorus herbicides, i.e., glyphosate, glufosinate, fosamine and ethephon, at nanogram levels in environmental waters. The target herbicides were separated completely by ion chromatography (IC) on a polymer anion-exchange column, Dionex IonPac AS16 (4.0 mm x 250 mm), with 30 mM citric acid flowing at 0.70 mL min(-1) as the eluent. On-line inductively coupled plasma mass spectrometry (ICP-MS) using a quadrupole mass spectrometer was employed as a sensitive and selective detector of the effluents. Various parameters affecting the separation and detection were systematically examined and optimized. Detection limits of the herbicides achieved with the proposed IC/ICP-MS method were 1.1-1.4 microg L(-1) (as compound) based on a 500-microL sample injection. Matrix anions, metal ions, phosphate, polyphosphates, non-polar and other polar organophosphorus pesticides showed no interference. The developed method was validated using reservoir water, treated water and NEWater samples spiked at the level of 10-25 microg L(-1) with satisfactory recoveries (95-109%). It is applicable to the simultaneous determination of microg L(-1) concentrations of the herbicides in polluted water.  相似文献   

6.
Recombinant Drosophila melanogaster acetylcholinesterase (R-DmAChE), multiwalled carbon nanotubes (MWCNTs), and Prussian blue have been combined for development of a three-electrode biosensor with more rapid responses and higher stability than in our previous study. A new disposable screen-printed electrode (SPE) was developed for rapid detection of organophosphate and carbamate pesticides. After optimization, 10 microg MWCNT and 5 microL enzyme immobilization solution consisting of 0.2% glutaraldehyde, 0.1% Nafion, 0.2% bovine serum albumin, 0.1 g/L MWCNT, and 1.5 mU R-DmAChE were fixed on each of the R-DmAChE/MWCNT SPEs. The LOD of this biosensor was 0.5 microg/L for pesticide standards of dichlorvos (DDV) and carbofuran. The performance of this biosensor was tested for vegetable and water samples at various spiked levels, and good stability and sensitivity were found. The obtained recoveries were from 82.6 to 110.5% for DDV at levels of 0.5-5 microg/L and 73.4 to 118.4% for carbofuran at 1-10 microg/L in lake and sea water samples, demonstrating that the proposed approach is an alternative means for rapid detection of pesticide residues and contaminants in food safety and environmental monitoring.  相似文献   

7.
A fast method for the determination of eight organotin compounds (OTs), monobutyltin (MBT), dibutyltin (DBT), tributyltin (TBT), tetrabutyltin (TeBT), monophenyltin (MPhT), diphenyltin (DPhT), triphenyltin (TPhT) and tetraphenyltin (TePhT), in water, sediments and mussels, was developed using low-pressure gas chromatography/tandem mass spectrometry (LPGC/MS/MS). The method is based on sodium diethyldithiocarbamate (DDTC) complexation of the ionic organotins, followed by extraction of the target matrices and derivatization by a Grignard reagent, as described in a previously published method for water samples. Solid-phase extraction was selected as extraction method from water samples after comparison with liquid-liquid extraction, but extraction of the OTs from sediment and mussel samples was performed using toluene. Matrix-matched calibration standards were used to minimize matrix effects. The analytical process was validated by the analysis of spiked blank samples. Performance characteristics such as linearity, detection limit (LOD), quantitation limit (LOQ), precision, and recovery were determined. Recoveries of OTs in spiked matrices ranged from 86-108% in water and from 78-110% in sediments and mussels, with precision values lower than 18%. Detection limits ranged from 0.1-9.6 ng L(-1) in water, and 0.03-6.10 microg kg(-1) in the other matrices. The present implementation of LPGC rather than conventional capillary GC permitted use of large-volume injection and reduced analysis time by a factor of two. The proposed methodology was applied to the determination of OTs in real samples of water, marine sediments and mussels from the west coast of the Mediterranean Sea (Spain).  相似文献   

8.
A Zeck  M G Weller  D Bursill  R Niessner 《The Analyst》2001,126(11):2002-2007
A monoclonal antibody (clone AD4G2) was generated against a common part of microcystins and nodularins, the unusual amino acid Adda [(2S,3S,8S,9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4E,6E-dienoic acid]. A direct competitive ELISA based on this antibody was developed and the cross-reactivity pattern was measured. Different toxins showed a very similar response. The assay provides therefore a sum parameter of microcystins, nodularins and peptide fragments containing Adda. The IC50 for microcystin-LR was 0.33 microg L(-1) which leads to a detection limit of 0.07 microg L(-1). This is well below the concentration of 1 microg L(-1) proposed by the World Health Organisation (WHO) as the limit for drinking water. Microcystin-LR spiked water samples in the concentration range between 0.1 and 1 microg L(-1) were measured and a mean recovery of 113+/-23% was found. The antibody is well suited for the determination of microcystins in drinking as well as surface water.  相似文献   

9.
An on-line solid-phase extraction (SPE) protocol using the cigarette filter as sorbent coupled with high-performance liquid chromatography (HPLC) was developed for simultaneous determination of trace naphthalene (NAPH), phenanthrene (PHEN), anthracene (ANT), fluoranthene (FLU), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), and benzo(ghi)perylene (BghiP) in water samples. To on-line interface solid-phase extraction to HPLC, a preconcentration column packed with the cigarette filter was used to replace a conventional sample loop on the injector valve of the HPLC for on-line solid-phase extraction. The sample solution was loaded and the analytes were then preconcentrated onto the preconcentration column. The collected analytes were subsequently eluted with a mobile phase of methanol-water (95:5). HPLC with a photodiode array detector was used for their separation and detection. The detection limits (S/N = 3) for preconcentrating 42 mL of sample solution ranged from 0.9 to 58.6 ng L(-1) at a sample throughput of 2 samples h(-1). The enhancement factors were in the range of 409-1710. The developed method was applied to the determination of trace NAPH, PHEN, ANT, FLU, BbF, BkF, BaP and BghiP in local river water samples. The recoveries of PAHs spiked in real water samples ranged from 87 to 115%. The precisions for nine replicate measurements of a standard mixture (NAPH: 4.0 microg L(-1), PHEN: 0.40 microg L(-1), ANT: 0.40 microg L(-1), FLU: 2.0 microg L(-1), BbF: 1.6 microg L(-1), BkF: 2.0 microg L(-1), BaP: 2.0 microg L(-1), BghiP: 1.7 microg L(-1)) were in the range of 1.2-5.1%.  相似文献   

10.
The determination of the animal feed additive roxarsone (3-nitro-4-hydroxyphenylarsonic acid) and six of its possible transformation products (arsenite, arsenate, monomethylarsonate, dimethylarsinate, 3-amino-4-hydroxyphenylarsonic acid, and 4-hydroxyphenylarsonic acid) in chicken manure was investigated using capillary electrophoresis-inductively coupled plasma-mass spectrometry (CE-ICP-MS). Initial method development was conducted using ultraviolet (UV) detection for ruggedness and time efficiency. Separation of these seven arsenic species was effected using a 20 mM phosphate buffer at pH 5.7. The CE-ICP-MS limits of detection in terms of As for each of the species was in the low microg.L(-1) range, corresponding to absolute detection limits in the range 20-70 fg As (based on a 23 nL injection). Overall, the method developed in this study provides high selectivity and low limits of detection (1-3 microg.L(-1) or low-ppb, based on As), uses small sample volume (low nL), and produces minimal wastes.  相似文献   

11.
The need for highly reliable methods for the determination of trace and ultratrace elements has been recognized in analytical chemistry and environmental science. A simple and powerful microextraction technique was used for the detection of the lead ultratrace amounts in water samples using the dispersive liquid-liquid microextraction (DLLME), followed by the electrothermal atomic absorption spectrometry (ET AAS). In this microextraction technique, a mixture of 0.50 mL acetone (disperser solvent), containing 35 microL carbon tetrachloride (extraction solvent) and 5 microL diethyldithiophosphoric acid (chelating agent), was rapidly injected by syringe into the 5.00 mL water sample, spiked with lead. In this process, the lead ions reacted with the chelating agent and were extracted into the fine droplets of CCl(4). After centrifugation (2 min at 5000 rpm), the fine CCl4 droplets were sedimented at the bottom of the conical test tube (25+/-1 microL). Then, 20 microL from the sedimented phase, containing the enriched analyte, was determined by ET AAS. The next step was the optimization of various experimental conditions, affecting DLLME, such as the type and the volume of the extraction solvent, the type and the volume of the disperser solvent, the extraction time, the salt effect, pH and the chelating agent amount. Moreover, the effect of the interfering ions on the analytes recovery was also investigated. Under the optimum conditions, the enrichment factor of 150 was obtained from only a 5.00 mL water sample. The calibration graph was linear in the range of 0.05-1 microg L(-1) with the detection limit of 0.02 microg L(-1). The relative standard deviation (R.S.D.) for seven replicate measurements of 0.50 microg L(-1) of lead was 2.5%. The relative lead recoveries in mineral, tap, well and sea water samples at the spiking level of 0.20 and 0.40 microg L(-1) varied from 93.5 to 105.0. The characteristics of the proposed method were compared with the cloud point extraction (CPE), the liquid-liquid extraction, the solid phase extraction (SPE), the on-line solid phase extraction (SPE) and the co-precipitation, based on bibliographic data. The main DLLME advantages combined with ET AAS were simplicity of operation, rapidity, low cost, high-enrichment factor, good repeatability, low consumption of extraction solvent, requiring a low sample volume (5.00 mL).  相似文献   

12.
A dispersive liquid-liquid microextraction (DLLME) procedure coupled with GC/MS detection is described for preconcentration and determination of some organophosphorus and azole group pesticides from water samples. Experimental conditions affecting the DLLME procedure were optimized by means of an experimental design. A mixture of 60 microL chlorobenzene (extraction solvent) and 750 microL acetonitrile (disperser solvent), 3.5 min extraction time, and 7.5 mL aqueous sample volume were chosen for the best recovery by DLLME. The linear range was 1.6-32 microg/L. The LOD ranged from 48.8 to 68.7 ng/L. The RSD values for organophosphorus and azole group pesticides at spiking levels of 3, 6, and 9 microg/L in water samples were in the range of 1.1-12.8%. The applicability and accuracy of the developed method were determined by analysis of spiked water samples, and the recoveries of the analyzed pesticides from artesian, stream, and tap waters at spiking levels of 3, 6, and 9 microg/L were 89.3-105.6, 89.5-103.0, and 92.0-111.3%, respectively.  相似文献   

13.
Multiwalled carbon nanotubes (MWCNTs) were used as a novel kind of solid-phase extraction adsorbents in this work as well as an analytical method based on MWCNTs solid-phase extraction (SPE) combined with high-performance liquid chromatography (HPLC) was established for the determination of polycyclic aromatic hydrocarbons (PAHs), some of which belong to typical persistent organic pollutants (POPs) owing to their carcinogenicity and endocrine disrupting activity. Several conditions that probably affected the extraction efficiency including the eluent volume, sample flow rate, sample pH and the sample volume were optimized in detail. The characteristic data of analytical performance were determined to investigate the sensitivity and precision of the method, and the method was applied to the determination of PAHs in environmental water samples such as river water sample, tap water sample and wastewater sample from the constructed wetland effluent. The experimental results indicated that there were excellent linear relationship between peak area and the concentration of PAHs over the range of 0.04-100 microg L(-1), and the precisions (RSD) were 1.7-4.8% under the optimal conditions. The detection limits of proposed method for the studied PAHs were 0.005-0.058 microg L(-1) (S/N=3). The recoveries of PAHs spiked in environmental water samples ranged from 78.7 to 118.1%. It was concluded that MWCNTs packed cartridge coupled with HPLC was an excellent alternative for the routine analysis of PAHs at trace level.  相似文献   

14.
Yin XB 《Electrophoresis》2004,25(12):1837-1842
An on-line preconcentration method was developed for capillary electrophoresis (CE) with hydride generation-atomic fluorescence spectrometric (HG-AFS) detection of arsenite, arsenate, dimethylarsenic acid, and monomethylarsenic acid. These arsenic species were negatively charged in the sample solution with high pH. When the potential was applied to the electrophoretic capillary, the negatively charged analyte ions moved faster and stacked at the boundary of sample and CE buffer with low pH. So, high sample pH in combination with low buffer pH allowed the injection of large sample volumes (approximately 1100 nL). Comparison of the preconcentration of analyte solution, prepared with doubly deionized water and that prepared with lake or river water, indicated that preconcentration was independent on the original matrix. With injection of approximately 1100 nL sample, an enrichment factor of 37-50-fold was achieved for the four species. Detection limits for the four arsenic species ranged from 5.0 to 9.3 microg.L(-1). Precisions (RSDs, n = 5) were in the range of 4.9-6.7% for migration time, 4.7-11% for peak area, and 4.3-7.1% for peak height, respectively. The recoveries of the four species in locally collected water solution spiked with 0.1 microg.mL(-1) (as As) ranged from 83 to 109%.  相似文献   

15.
Headspace liquid-phase microextraction (HS-LPME) has been applied to efficient enrichment of phenols such as 2-nitrophenol, 4-chlorophenol, 2,4-dichlorophenol, and 2-naphthol from water samples based on 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]) as an extractant. Some parameters that may influence HS-LPME were investigated. The linear range was in the range of 0.5-100 microg/L, and the enrichment factors and repeatability (RSD, n = 6) of the proposed method were in the range of 17.2-160.7 and 5.4-8.9%, respectively. The detection limit for each analyte ranged from 0.3 to 0.5 microg/L. Complex matrices of environmental water samples had a small effect on the enrichment, and this problem could be resolved by the addition of sodium ethylene diamine tetraacetate (EDTA) into the samples. The spiked recoveries were in the range of 89.4-114.2%. All these facts demonstrated that the proposed method, with merits of low cost, simplicity, and easy operation, would be a competitive alternative procedure for the determination of such compounds at trace level.  相似文献   

16.
Stir bar sorptive extraction with polyurethane (PU) and polydimethylsiloxane (PDMS) polymeric phases followed by high-performance liquid chromatography with diode array detection [SBSE(PU or PDMS)/HPLC-DAD] was studied for the determination of six acidic pharmaceuticals [o-acetylsalicylic acid (ACA), ibuprofen (IBU), diclofenac sodium (DIC), naproxen (NAP), mefenamic acid (MEF) and gemfibrozil (GEM)], selected as non-steroidal acidic anti-inflammatory drugs and lipid regulators model compounds in environmental water matrices. The main parameters affecting the efficiency of the proposed methodology are fully discussed. Assays performed on 25 mL of water samples spiked at the 10 microg L(-1) level under optimized experimental conditions, yielded recoveries ranging from 45.3+/-9.0% (ACA) to 90.6+/-7.2% (IBU) by SBSE(PU) and 9.8+/-1.6% (NAP) to 73.4+/-5.0% (GEM) by SBSE(PDMS), where the former polymeric phase presented a better affinity to extract these target analytes from water matrices at the trace level. The methodology showed also excellent linear dynamic ranges for the six acidic pharmaceuticals studied, with correlation coefficients higher than 0.9976, limits of detection and quantification between 0.40-1.7 microg L(-1) and 1.5-5.8 microg L(-1), respectively, and suitable precision (RSD <15%). Moreover, the developed methodology was applied for the determination of these target analytes in several environmental matrices, including river, sea and wastewater samples, having achieved good performance and moderate matrix effects. In short, the PU foams demonstrated to be an excellent alternative for the enrichment of the more polar metabolites from water matrices by SBSE, overcoming the limitations of the conventional PDMS phase.  相似文献   

17.
A new method for the simultaneous chromatographic separation and determination of arsenite, arsenate, mono-methylarsonic acid, dimethylarsinic acid, selenite, selenate and hexavalent chromium in water is presented. Speciation was achieved by on-line coupling of anion-exchange LC and inductively coupled plasma mass spectrometry (ICP-MS). Optimisation of the chromatographic conditions led to baseline separation of the seven species in 14 min using gradient elution with NH4NO3 20 mM, pH 8.7-NH4NO3 60 mM, pH 8.7 as mobile phase. Detection limits are in the range 40-60 ng l(-1) for arsenic species, around 130 ng l(-1) for Cr(VI), and higher for Se(IV) and Se(VI) (1.2 and 1.4 microg l(-1) respectively). The method showed good accuracy and repeatability, and no interference of chloride on 75As, 77Se or 53Cr was observed. The developed method was applied to the analysis of several environmental surface water samples.  相似文献   

18.
A minicolumn packed with poly(aminophosphonic acid) chelating resin incorporated in an on-line preconcentration system for flame atomic-absorption spectrometry was used to determine ultratrace amounts of lead in mussel samples at microg L(-1) level. The preconcentrated lead was eluted with hydrochloric acid and injected directly into the nebulizer for atomization in an air-acetylene flame for measurement. The performance characteristics of the determination of lead were: preconcentration factor 26.8 for 1 min preconcentration time, detection limit (3sigma) in the sample digest was 0.25 microg g(-1) (dry weight) for a sample volume of 3.5 mL and 0.2 g sample (preconcentration time 1 min), precision (RSD) 2.3% for 25 microg L(-1) and 2.0% for 50 microg L(-1). The sampling frequency was 45 h(-1). The method was highly tolerant of interferences, and the results obtained for the determination of lead in a reference material testify to the applicability of the proposed procedure to the determination of lead at ultratrace level in biological materials such as mussel samples.  相似文献   

19.
A simple spectrophotometric system, based on a prolonged pseudo-liquid drop device as an optical cell and a handheld charge coupled device (CCD) as a detector, was constructed for automatic liquid-liquid extraction and spectrophotometric speciation of trace Cr(VI) and Cr(III) in water samples. A tungsten halogen lamp was used as the light source, and a laboratory-constructed T-tube with two open ends was used to form the prolonged pseudo-liquid drop inside the tube. In the medium of perchloric acid solution, Cr(VI) reacted with 1,5-diphenylcarbazide (DPC); the formed complex was automatically extracted into n-pentanol, with a preconcentration ratio of about 5. The organic phase with extracted chromium complex was then pumped through the optical cell for absorbance measurement at 548 nm. Under optimal conditions, the calibration curve was linear in the range of 7.5 - 350 microg L(-1), with a correlation coefficient of 0.9993. The limit of detection (3sigma) was 7.5 microg L(-1). That Cr(III) species cannot react with DPC, but can be oxidized to Cr(VI) prior to determination, is the basis of the speciation analysis. The proposed speciation analysis was sensitive, yet simple, labor-effective, and cost-effective. It has been preliminarily applied for the speciation of Cr(VI) and Cr(III) in spiked river and tap water samples. It can also be used for other automatic liquid-liquid extraction-spectrophotometric determinations.  相似文献   

20.
Closed microwave digestion and a high-pressure asher have been evaluated for wet-oxidation and extraction of lead, cadmium, chromium, and mercury from a range of typical packaging materials used for food products. For the high-pressure asher a combination of nitric and sulfuric acids was efficient for destruction of a range of packaging materials; for polystyrene, however, nitric acid alone was more efficient. For microwave digestion, a reagent containing nitric acid, sulfuric acid, and hydrogen peroxide was used for all materials except polystyrene. Use of the high-pressure asher resulted in the highest recoveries of spiked lead (median 92%), cadmium (median 92%), chromium (median 97%), and mercury (median 83%). All samples were spiked before digestion with 40 microg L(-1) Cd, Cr, and Pb and 8 microg L(-1) Hg in solution. The use of indium as internal standard improved the accuracy of results from both ICP-MS and ICP-AES. Average recovery of the four elements from spiked packaging materials was 92 +/- 14% by ICP-MS and 87 +/- 15% (except for mercury) by ICP-AES. For mercury analysis by CVAAS, use of tin(II) chloride as reducing agent resulted in considerably better accuracy than use of sodium borohydride reagent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号