首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocomposite ZnO–Ag thin film containing nano-sized Ag particles have been grown on glass substrate by spin-coating technique using zinc acetate dihydrate as starting precursor in 2-propanol as solvent and monoethanolamine as stabilizer. Silver nanoparticles were added in the ZnO sol using silver nitrate dissolved in ethanol-acetonitrile. Their structural, electrical, crystalline size and optical properties were investigated as a function of preheating, annealing temperature and silver content. The results indicated that the crystalline phase was increased with increase of annealing temperature up to 550 °C at optimum preheating temperature of 275 °C. Thermal gravimetric differential thermal analysis results indicated that the decomposition of pure ZnO and nanocomposite ZnO–Ag precursors occurred at 225 and 234 °C, respectively with formation of ZnO wurtzite crystals. The scanning electron microscopy and atomic force microscopy revealed that the surface structure (the porosity and grain size) of the ZnO–Ag thin film (the film thickness is about 379 nm) was changed compared to pure ZnO thin film. The result of transmission electron microscopy showed that Ag particles were about 5 nm and ZnO particles 58 nm with uniform silver nanoclusters. Optical absorption results indicated that optical absorption of ZnO–Ag thin films decreased with increase of annealing temperature. Nanocomposite ZnO–Ag thin films with [Ag] = 0.068 M and [Ag] = 0.110 M showed an intense absorption band, whose maximum signals appear at 430 nm which is not present in pure ZnO thin films. The result of X-ray photoelectron spectroscopy revealed that the binding energy of Ag 3d5/2 for ZnO–Ag shifts remarkably to the lower binding energy compared to the pure metallic Ag due to the interaction between Ag and ZnO.  相似文献   

2.
Aluminum molybdate was successfully synthesized using a simplified PVA assisted sol–gel method resulting in highly crystalline, monophasic (monoclinic P21/a) samples. These materials could readily be obtained at temperatures of 600 and 700 °C after calcining for as little as 15–20 min. Scanning electron microscopy and X-ray powder diffraction indicated that even the sample calcined at 600 °C for 20 min was free of impurities and composed of submicron sized particles (~300 nm). Transmission electron microscopy was used to confirm the monophasic character and submicron dimensions of the as-prepared powders. In addition to producing high quality samples, it was also observed that the metal to PVA ratio used during this simplified synthesis, could be used as a control parameter for tailoring the particle sizes of the final product.  相似文献   

3.
《Comptes Rendus Chimie》2017,20(1):47-54
ZnO particles with different morphological forms and various scale sizes were successfully synthesized as photocatalysts using two different methods (sol–gel and precipitation) and three precursors (zinc acetate dihydrate, zinc nitrate hexahydrate, and zinc sulfate heptahydrate). These materials were calcined at 500 °C for 3 h and characterized by various physicochemical techniques such as X-ray diffraction, Fourier transform infrared, transmission electron microscopy, SBET, and UV–vis diffuse reflectance. The results showed that the crystalline structure, size, and morphology of the ZnO particles are strongly influenced by the preparation method and by the nature of the precursor used as reactant. The photocatalytic efficiency of the synthesized photocatalysts was evaluated by the photodegradation of methyl orange in aqueous solution under UV-A light. The results showed that the ZnO nanoparticles prepared the by sol–gel method from zinc acetate are more efficient than those prepared by the precipitation method.  相似文献   

4.
Bismuth silicon oxide (Bi12SiO20, BSO) nano crystalline powder was prepared by sol–gel technique using bismuth nitrate and tetraethyl orthosilicate as starting materials. The prepared samples were sintered at various temperatures (750 °C maximum) and characteristic sillenite single cubic phase with crystallite size ~38 nm (calculated from room temperature powder XRD measurements) was realized at 750 °C sintering temperature. SEM analysis showed that the powder contains the nano-sized particles with almost spherical morphology. The observed frequencies in room temperature FTIR spectrum could be assigned to Bi–O, Si–O and Bi–O–Si bonds. The FWHM (full width at half maximum) of the diffraction peaks decreased while the intensity of FTIR absorption lines increased with the increase in the sintering temperature indicating better bond formation and crystallization. The thermograph of the samples recorded in the temperature range 50–1,000 °C showed almost no weight loss after ~575 °C further confirmed the conclusion arrived at from XRD and FTIR analysis. The samples sintered at 750 °C showed about 50% absorbance in 400–600 nm region which was consistent with the pale yellow color of the sample. Broad blue emission centered ~478 nm was observed when excited by 350 nm radiation from a Xe-lamp. The intensity of this broad emission band increased while its FWHM decreased with the increase in sintering temperature. Self-trapped excitons could be responsible for this emission.  相似文献   

5.
Phostungstic acid (PWA) nanoclusters grafted onto high surface area polycrystalline hydrous zirconia powder (PWA/ZrO2) was prepared by wet impregnation method. The zirconia particles were synthesized using a modified sol–gel route. The obtained material was characterized by X-ray diffraction (XRD), UV–Vis–diffuse reflectance spectroscopy (UV–Vis–NIR–DRS), infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and sorptometric techniques. XRD study revealed the presence of tetragonal phase of zirconia in the synthesized sample. TEM study indicates presence of small PWA clusters with size in the range of 5–15 nm well dispersed on the surface of the ZrO2 particles. The characteristic UV and IR absorption feature of the PWA was retained in the PWA/ZrO2 material. The PWA/ZrO2 material was used as an efficient catalyst for the preparation of octahydroquinazolinones and β-acetamido ketones. The octahydroquinazolinones were synthesized by the multicomponent condensation of dimedones, urea and aryl aldehydes in ethanol. Similarly, β-acetamido ketones were synthesized with high yield and purity by four component condensation of aryl aldehydes, enolizable ketones, and acetyl chlorides in acetonitrile. The protocols developed in this investigation using the PWA/ZrO2 catalyst is advantageous in terms of simple experimentation, high yield and purity of the products and recovery and reutilization of the heterogeneous catalyst.  相似文献   

6.
The present work deals with the synthesis of Ni–SiO2–Al2O3 nanocomposites fabricated by embedding nickel oxide particles, obtained from hexahydrated nickel nitrate [Ni(NO3)2 · 6H2O], in matrixes with different molar percents of Silica/Alumina, through sol–gel method based on hydrolysis and condensation of tetraethylorthosilicate (TEOS) and Aluminum Isopropoxide [Al(OC3H7)3] alkoxides. Due to the various factors, e.g., pH, EtOH/TEOS/H2O ratio, Si/Ni ratio etc., influencing the nickel grain size of the nanocomposites, Taguchi robust design method of system optimization was used to determine the percent of contribution (%ρ) of each factor. The nanocomposites were reduced in a flow of hydrogen and nitrogen gas at 700 °C for half an hour. The nickel grain size in the nanocomposites was determined by utilizing Scherrer`s method and XRD patterns. The smallest nickel grain size obtained from the Taguchi orthogonal array was about 24 nm, later confirmed by TEM observations. After optimization of the controlling factors, a nickel grain size of 15.4 nm was obtained. It was found that the SiO2/Al2O3 molar ratio of the matrix had the most influence on the nickel grain size (29.22%) and the Water/TEOS molar ratio stood in second place (21.44%). It was illustrated that the starting temperature of the aluminum isopropoxide had the least influence on the nickel grain size.  相似文献   

7.
Nanosized zinc aluminate spinel (gahnite, ZnAl2O4) powders were prepared by sol−gel technique at low sintering temperatures. Aluminium-sec-butoxide [Al(OsBu)3] and zinc nitrate hexahydrate Zn(NO3)2 . 6H2O were used as starting materials. Gels with and without chelating agent were prepared. Ethyl-acetoacetate (C6H10O3) was used as a chelating agent in order to control the rate of hydrolysis of Al(OsBu)3. The dried gels and thermally treated samples were characterized by means of Differential Thermal Analysis and Thermo-Gravimetric Analysis (DTA, TGA), X-ray Diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR) and Transmission Electron Microscopy (TEM). The surface area was measured by Brunauer-Emmet-Teller (BET) adsorption–desorption isotherms. It has been established that chelation enables to obtain a transparent gel. The thermal evolution of gels was characterized by two crystallization processes in the range 200–400 °C and 600–700 °C. Both processes yielded pure ZnAl2O4 as evidenced by XRD, i.e. zinc aluminate spinel powders were produced by gel heat-treatment at temperatures as low as 300 °C. The average gahnite crystallite size for the samples sintered in the temperature range of 400–1000 °C has been calculated from the broadening of XRD lines revealing that nanocrystalline powders were prepared. The surface areas measured for the samples fired at 700 °C for 2 h were 43.1 and 62.6 m2 g−1, for sample without and with the chelating agent, respectively. TEM micrographs confirmed the nano-scale size of particles.  相似文献   

8.
The corrosion and passivation of Zn powder particles dispersed in a paste electrode immersed in 0.5 M Na2SO4 and 5×10–3 M Na2HPO4 solutions were studied mainly by electrochemical impedance spectroscopy. The role played by diffusion in the mechanism of anodic oxidation of zinc powder particles has been shown. It was demonstrated that the anodic reactionof Zn powder in neutral or near neutral media involves at least two adsorbed intermediates. By simulating the porous structure of the electrode, some information about porous nature of zinc electrode could be extracted. Electronic Publication  相似文献   

9.
The voltammetry of nanoparticles and scanning electrochemical microscopy are applied to characterize praseodymium centers in tetragonal and monoclinic zirconias, doped with praseodymium ions (Pr x Zr1−x O2), prepared via sol–gel routes. Doped zirconia nanoparticles were synthesized by a sol–gel liquid-phase route and characterized by different techniques, including X-ray diffraction powder pattern, ultraviolet–visible diffuse reflectance spectroscopy, infrared spectroscopy, and transmission electron microscopy (TEM). Gels annealed at around 400 °C yielded tetragonal Pr x Zr1−x O2 phases. The monoclinic forms of Pr-doped ZrO2 were obtained by annealing at temperatures higher than 1,100 °C. TEM micrographs proved that the size of the nanoparticles produced was dependent on their crystalline form, around 15 and 60 nm for tetragonal and monoclinic, respectively. The electrochemical study confirmed that a relatively high content of praseodymium cation was in the chemical state (IV), i.e., as Pr4+, in both zirconia host lattices. The catalytic and photocatalytic effects of Pr4+ centers located in the monoclinic zirconia lattice on nitrite reduction and oxygen evolution reaction were studied.  相似文献   

10.
Terbium doped calcium phosphate (Tb-doped CaP) nanocrystalline powders were synthesized by the citric acid sol–gel combustion method. The phase composition, morphology and luminescent property of Tb-doped CaP nanocrystalline powders were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, fluorescence spectrophotometer and fluorescence microscopy. At 700 °C, Tb-doped CaP nanocrystalline powders are composed of HAP (main phase) and β-TCP (minor phase) with Tb doping content of 0.5–4%. SEM and TEM observations show that the 4% Tb-doped CaP nanocrystalline powders are about 50–150 nm spherical particles. The 4% Tb-doped CaP nanocrystalline powders exhibit the strongest emission at 548 nm (λexcitation = 240 nm) and show strong green fluorescence under fluorescence microscopy.  相似文献   

11.
Nanosized strontium titanate (SrTiO3) was synthesized from strontium titanyl oxalate hydrate, SrTiO(C204)24H20 (STO) precursor employing microwave heating technique. STO precursor was characterized by Thermogravimetry (TG) and differential thermal analysis (DTA) techniques prior to the heat treatment in conventional and microwave heating system. STO precursor heated in microwave heating system in air at 773 K for 30 min yielded pure cubic SrTiO3. The product obtained by heating of STO precursor in the same system at 973 K for same duration was, however, much more crystalline. Experiments repeated in conventional furnace showed that SrTiO3 was formed above 973 K. SrTiO3 powder obtained was characterized by X-ray diffraction (XRD) and Transmission electron microscopy (TEM) techniques. TEM study shows that the particles of SrTiO3 are nearly spherical in shape and the particle size of SrTiO3 powder varies between 28 and 68 nm.  相似文献   

12.
In this study high specific surface area yttria-stabilized zirconia (ZrO2–8Y2O3) nanocrystalline powder have been synthesized through “modified polymerized complex (MPC) method”. Zirconium chloride, yttrium nitrate, citric acid and ethylene glycol were polymerized at 80 °C to produce a gel-like mass in which metallic ions were uniformly distributed. During the thermal treatment of dried gel, nanocrystalline YSZ powder was formed. Thermal reactions and phase formation of dried gel were investigated through thermal analysis (DTA/TG) and X-ray diffraction (XRD) analysis, respectively. Chemical bonding and thermal decomposition behavior of dried gel was investigated by FTIR analysis. During decomposition, the nature of the bonding between carboxylate groups and the cations changed from unidentate to bridging at 370 °C and carbonate species were detected at 470 °C. Morphology of powder calcined at 650 °C was analyzed by scanning electron microscope (SEM). YSZ powder with high specific surface area was prepared successfully by this method.  相似文献   

13.
Over the past decade sol–gel methods have become increasingly popular alternatives to the solid state synthesis of metal oxides. In many cases sol–gel synthesis is preferred due to desirable physical properties such as high surface area, high porosity, and small crystallite size. Monolithic zinc ferrite aerogels were produced by the epoxide addition sol–gel method. It was observed that addition of propylene oxide to 2-propanol solution of either the hydrated metal nitrate salts or the hydrated metal chloride salts resulted in the formation of stable red–brown gels. Aerogels were characterized using powder X-ray diffraction, high resolution scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption/desorption analysis. The metal salt used in the synthesis was found to significantly influence the properties of the aerogel. All aerogels synthesized exhibited low densities and high surface areas (>340 m2/g). Annealing of the aerogel at relatively low temperatures (below 450 °C) yielded a highly crystalline porous material which is composed of nanometer sized particles.  相似文献   

14.
Undoped and zinc-doped TiO2 nanoparticles (Ti1−xZnxO2 where x = 0.00–0.10) were synthesized by a sol–gel method. The synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and UV–VIS spectrometer. XRD pattern confirmed the tetragonal structure of synthesized samples. Average grain size was determined from X-ray line broadening using the Debye–Scherrer relation. The crystallite size was varied from 10 to 40 nm as the calcination temperature was increased from 350 to 800 °C. The incorporation of 3–5 mol% Zn2+ in place of the Ti4+ provoked a slight decrease in the size of nanocrystals as compared to undoped TiO2. The SEM and TEM micrographs revealed the agglomerated spherical-like morphology with a diameter of about 10–30 nm and length of several nanometers, which is in agreement with XRD results. Optical absorption measurements indicated a blue shift in the absorption band edge upon 3–5 mol% zinc doping. Direct allowed band gap of undoped and Zn-doped TiO2 nanoparticles measured by UV–VIS spectrometer were 2.95 and 3.00 eV at 550 °C, respectively.  相似文献   

15.
The reactivity of CeO2 is determined by grain size and oxygen vacancies, which can be achieved by doping elements with less oxidation state into CeO2. In this study nanocrystalline Ca-doped CeO2 sol was synthesized from the reaction of hydrate cerium (III) nitrate and calcium nitrate tetrahydrate in alcohol solution after being calcined at 600?°C. X-ray diffraction as well as selected area electron diffraction gave evidence that the synthesized Ca-doped CeO2 samples were well crystalline and had a cubic fluorite structure. TEM observation revealed that Ca-doped CeO2 was composed by nanoparticles with grain size around 8?nm. The Raman spectrum of pure CeO2 consists of a single triple degenerate F2g model characteristic of the fluorite-like structure. In the Ca-doped CeO2 sample, two additional low-intensity Raman bands were detected, thus confirming the formation of the solid solution. The synthesized nanometric powder is expected to be used in solid oxide fuel cells as well as in the catalytic treatment of automobile exhaust fumes.  相似文献   

16.
KGd(WO4)2 (KGW) particles were synthesized at 3.5, 5.5 and 7.5 pH values by Pechini polymeric complex sol–gel method using potassium nitrate, gadolinium nitrate, ammonium paratungstate, citric acid and ethylene glycol as starting materials. Deionized water was used as solvent. Polymeric precursor gel was formed with citric acid as complexing agent and ethylene glycol as binder. Synthesized gel was analyzed by FT-IR spectroscopy. Prepared precursor gels were further annealed using resistive and microwave processes at 550 and 700 °C, respectively. The properties of heat treated samples were characterized by powder XRD, FT-IR, Raman and SEM analysis to understand the crystallinity, organic liberation, tungstate ribbon formation and surface morphology, respectively. The phase formation and different phases of intermediate oxides in pre-fired samples were investigated by powder XRD. Organic liberation in the samples in relation to temperature, and the carbon content in the pre-fired powder was analyzed using FT-IR spectrum. Raman spectrum reveals the formation of tungsten ribbons as well as the quality of the samples. The morphological changes at different synthesis conditions were observed with SEM micrographs.  相似文献   

17.
Lubricating oil additives based on boron compounds are promising materials for lubrication due to their tribological advantages such as antiwear efficiency, good film strength, and high temperature resistance. This article deals with the preparation of zinc borate particles that are well dispersed and colloidally stabilized in mineral oil. This method starts with preparing two inverse emulsions (water-in-oil) with sorbitan monostearate (Span 60) as a surfactant, light neutral oil as a continuous phase, and the aqueous solutions of borax decahydrate (Na2B4O7·10H2O) and zinc nitrate (Zn(NO3)2·6H2O) as the dispersed phases. The produced particles were zinc borate crystals having both rod-like and spherical morphologies, and the diameters of spherical particles were changing between 20 and 30 nm. FTIR spectra of the obtained particles showed the characteristic peaks of trihedral borate (B(3)-O) and tetrahedral borate (B(4)-O) groups as well as the specific peaks of the sorbitan monostearate. TG showed 30.42% and 22.08% mass loss at 600 °C for the samples prepared by inverse emulsion and precipitation techniques, respectively. The endothermic peak at 50 °C is observed due to the melting of sorbitan monostearate and the heat of melting is evaluated as −3.50 J/g. Tribological studies revealed that sorbitan monostearate not only outperformed as a dispersing agent of inorganic particles, but also it proved to be an anti-wear agent. Zinc borate produced by precipitation decreased the wear scar diameter from 1.402 to 0.639 mm and the friction coefficient from 0.099 to 0.064. The inverse emulsion was effective in decreasing wear scar diameter and the friction coefficient by lowering them to 0.596 and 0.089 mm, respectively.  相似文献   

18.
For the utilization as inorganic/organic hybrid nanomaterials for optical purposes, nanocrytalline tetragonal ZrO2 was synthesized by hydrothermal method using zirconium(IV)-n-propoxide as precursor material. Surface of the ZrO2 particles was then modified with 2-acetoacetoxyethyl methacrylate used as a copolymer for coatings. X-ray diffraction analysis revealed that both ZrO2 and modified ZrO2 are in tetragonal crystalline phase. As proved by transmission electron microscope and particle size analysis, average particle sizes of ZrO2 and modified ZrO2 were found as 6.22 and 14.7 nm, respectively. ZrO2 powder was easily dispersed either in water or n-hexane. Ultraviolet diffuse reflectance spectrophotometer analysis for ZrO2 and surface modified ZrO2 showed that maximum absorption peaks are at 215 and 225 nm, respectively.  相似文献   

19.
Nanocrystalline Mg–Cu–Zn ferrite powders were successfully synthesized through nitrate–citrate gel auto-combustion method. Characterization of the nitrate–citrate gel, as-burnt powder and calcined powders at different calcination conditions were investigated by using XRD, DTA/TG, IR spectra, EDX, VSM, SEM and TEM techniques. IR spectra and DTA/TGA studies revealed that the combustion process is an oxidation–reduction reaction in which the NO3 ion is oxidant and the carboxyl group is reductant. The results of XRD show that the decomposition of the gel indicated a gradual transition from an amorphous material to a crystalline phase. In addition, increasing the calcination temperature resulted in increasing the crystallite size of Mg–Cu–Zn ferrite powders. VSM measurement also indicated that the maximum saturation magnetization (64.1 emu/g) appears for sample calcined at 800 °C while there is not much further increase in M s at higher calcination temperature. The value of coercivity field (H c) presents a maximum value of 182.7 Oe at calcination temperature 700 °C. TEM micrograph of the sample calcined at 800 °C showed spherical nanocrystalline ferrite powders with mean size of 36 nm. The toroidal sample sintered at 900 °C for 4 h presents the initial permeability (μ i) of 405 at 1 MHz and electrical resistivity (ρ) of 1.02 × 108 Ω cm.  相似文献   

20.
A novel ZnO/cotton composite, in which ZnO nanoparticles were synthesized directly inside of the lumen and the mesopores of cotton fibers, was fabricated via a simply two-step hydrothermal method in situ using zinc nitrate hexahydrate and hexamethylenetetramine as raw materials. The as-obtained cotton sample was characterized by powder X-ray diffractometer, field emission scanning electron microscopy, and energy-dispersive spectroscopy, respectively. The UV-blocking property of the as-obtained sample was investigated by UV–vis spectrophotometry. The results showed that hexagonal wurtzite nano-ZnO with a diameter of about 30–40 nm was successfully assembled into the lumen as well as the mesoporous structure of the cotton fibers. The UV-blocking property of the modified cotton fibers can be greatly improved by assembling nano-ZnO into the inner of cotton fibers. Comparing with the neat cotton fibers, the UV-blocking ratio of the ZnO assembled cotton fibers inside of KBr disk could reach 80% at 300 nm and 95% at 225 nm, respectively. Therefore, it demonstrated a significant advance in protective functional treatment and provided a potential commercialization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号