首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel cationic hydrophilic interaction monolithic stationary phase based on the chemical modification of carboxymethyl chitosan (CMCH) to the monolithic silica skeleton using carbodiimide as an activation reagent was prepared for performing capillary liquid chromatography. The amino and hydroxy moieties of CMCH functioned as both the ion-exchange sites and polar providers. The performance of the column was studied by the separation of polar acidic compounds. The chitosan functionalized monolithic silica column showed good selectivity for nucleosides, nucleotides, aromatic acids and aliphatic acids. The mechanism for the separation of these compounds was also studied. The results showed that these compounds were separated primarily based on the hydrophilic interaction mechanism.  相似文献   

2.
A new protein adsorbent is introduced based on the coupling of the common buffer ion, tris(hydroxymethyl)aminomethane, to the agarose gel Sepharose HP from GE Healthcare Bio-Sciences AB, Uppsala, Sweden. The article describes the synthesis of the new adsorbent and the use of BSA as a model in a binding study. By optimization of the coupling procedure, a maximum ligand density of 63.5 μmol/mL gel could be obtained. Adsorption equilibria were investigated in the pH range 5.0-8.0 and at salt concentrations of 0-0.4 mol/L. Binding of BSA under different conditions indicated that both electrostatic interaction and hydrogen bonding were involved in the adsorption process where the former played a major role.  相似文献   

3.
The retention characteristics of a silicon oxynitride stationary phase for carbohydrate separation were studied in hydrophilic interaction chromatography mode. Four saccharides including mono‐, di‐, and trisaccharides were employed to investigate the effects of water content and buffer concentration in the mobile phase on hydrophilic interaction liquid chromatography retention. For the tested saccharides, the silicon oxynitride column demonstrated excellent performance in terms of separation efficiency, hydrophilicity, and interesting separation selectivity for carbohydrates compared to the bare silica stationary phase. Finally, the silicon oxynitride hydrophilic interaction liquid chromatography column was employed in the separation of complex samples of fructooligosaccharides, saponins, and steviol glycoside from natural products. The resulting chromatograms demonstrated good separation efficiency and longer retention compared with silica, which further confirmed the advantages and potential application of silicon oxynitride stationary phase for hydrophilic interaction liquid chromatography separation.  相似文献   

4.
A novel porous zwitterionic monolith was prepared by thermal co-polymerisation of 2-methacryloyloxyethyl phosphorylcholine (MPC) and ethylene glycol dimethacrylate (EDMA) within 100 μm I.D. capillaries. Mercury intrusion porosimetry, scanning electron microscopy (SEM), micro-HPLC (μ-HPLC), elemental analysis and ζ-potential analysis were used to evaluate the monolithic structure. No evidence of swelling or shrinking of the monolith in different polarity solvents was observed. A typical hydrophilic liquid chromatography (HILIC) mechanism was observed at high organic solvent content (acetonitrile >60%). The phosphorylcholine (PC) functionality has both a positively charged quaternary ammonium and a negatively charged phosphate group. For charged analytes, a weak electrostatic interaction was also observed by studying the influence of mobile phase pH and salt concentration on their retentions on the poly(MPC-co-EDMA) monolithic column. The optimised poly(MPC-co-EDMA) monolith showed very good selectivities for a range of polar test analytes, especially small peptides. This might be ascribed to the good biocompatibility of PC functionality. At low organic solvent content, baseline separation was also observed for a test mixture of seven alkylphenones by a reversed-phase separation mechanism.  相似文献   

5.
Three novel hydrophilic interaction chromatography columns packed with bare silica 2.6 μm superficially porous particles were evaluated. These stationary phases undergo a different pretreatment temperature (400, 525, and 900°C) that might influence their kinetic performance and thermodynamic properties. In the first instance, we demonstrated that the performance of these columns was inferior to the commercial ones in the low plate count range (10 000 plates), but was more favorable for N values beyond 40 000 plates. Thanks to its high permeability and reasonable flow resistance (φ = 695), together with a minimum reduced heights equivalent to a theoretical plate value of only 2.4, the stationary phase pretreated at 400°C was particularly attractive for N > 70 000 plates with a remarkably low impedance value (E = 2488). In a second step, the impact of pretreatment temperature was evaluated using two mixtures of polar substances, namely nucleobases and derivatives, as well as nicotine and derivatives. Retentions and selectivities achieved on the tested stationary phases were appropriate, but selectivity differences were minor when modifying pretreatment temperature from 400 to 525°C. When we increased the pretreatment temperature up to 900°C, the surface chemistry was more seriously modified. Finally, the columns presented a good stability even at high temperature (70°C), especially for the phases pretreated at 400 and 525°C.  相似文献   

6.
A stationary phase composed of silica-bonded sulfonated cyclofructan 6 (SCF6) was synthesized and evaluated for hydrophilic interaction chromatography (HILIC). The separation of a large variety of polar compounds was evaluated on different versions of the stationary phase and compared with the same separations obtained with commercially available HILIC columns. The new columns successfully separate polar and hydrophilic compounds including β blockers, xanthines, salicylic acid related compounds, nucleic acid bases, nucleosides, maltooligosaccharides, water soluble vitamins and amino acids. The separation conditions were optimized by changing the composition and the pH of the mobile phase. The dependence of analyte retention on temperature was studied using van't Hoff plots. The newly synthesized stationary phase showed broad applicability for HILIC mode separations.  相似文献   

7.
The most separations in HILIC mode are performed on silica-based supports. Nevertheless, recently published results have indicated that the metal oxides stationary phases also possess the ability to interact with hydrophilic compounds under HILIC conditions. This paper primarily describes the retention behaviour of model hydrophilic analytes (4-aminobenzene sulfonic acid, 4-aminobenzoic acid, 4-hydroxybenzoic acid, 3,4-diaminobenzoic acid, 3-aminophenol and 3-nitrophenol) on the polybutadine modified zirconia in HILIC. The results were simultaneously compared with a bare zirconia and a silica-based HILIC phase. The mobile phase strength, pH and the column temperature were systematically modified to assess their impact on the retention of model compounds. It was found that the retention of our model hydrophilic analytes on both zirconia phases was mainly governed by adsorption while on the silica-based HILIC phase partitioning was primarily involved. The ability of ligand-exchange interactions of zirconia surface with a carboxylic moiety influenced substantially the response of carboxylic acids on the elevated temperature as well as to the change of the mobile phase pH in contrast to the silica phase. However, no or negligible ligand-exchange interactions were observed for sulfanilic acid. The results of this study clearly demonstrated the ability of modified zirconia phase to retain polar acidic compounds under HILIC conditions, which might substantially enlarge the application area of the zirconia-based stationary phases.  相似文献   

8.
A novel hydrophilic polymer-coated silica sorbent has been prepared using the radical "grafting from" polymerization method through surface-bound azo initiators for hydrophilic-interaction chromatography (HILIC). The azo groups were introduced to the surface of silica gel through the reaction with amino groups on the surface of silica gel with 4,4'-azobis(4-cyanopentanoic acid chloride) (ACVC). The resultant azo-immobilized silica gel served as surface initiator to polymerize hydrophilic triol acrylamide monomer N-acryloyltris(hydroxymethyl) aminomethane (NA) in methanol to get hydrophilic polymer-coated silica sorbent. The obtained poly(NA)-coated silica (pNA-sil) was characterized by Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), and nitrogen sorption porosimetry (NSP). Then the pNA-sil was packed into the stainless-steel column and evaluated in high-performance liquid chromatography (HPLC). Good chromatographic performance for the separation of peptides and nucleosides was obtained under HILIC mode. The results indicated that the pNA-sil stationary phase behaved as mixed-mode retention mechanisms of hydrophilic and ionic interactions. Furthermore, the pNA-sil phase was used to separate tryptic digest of β-casein and our results showed that more than 12 peptides peaks were resolved and well distributed within the elution window. Finally, the pNA-sil stationary phase was demonstrated to possess remarkable reproducibility and stability. Taken together, the pNA-sil stationary phase prepared in the current study offers a potential application in proteomics study.  相似文献   

9.
Slides for ultra thin-layer chromatography (UTLC) were made by coating nonporous silica particles, chemically modified with polyacrylamide, as 15 μm films on glass or silicon. Three proteins, myoglobin, cytochrome c and lysozyme, are nearly baseline resolved by the mechanism of hydrophilic interaction chromatography. A plate height as low as 3 μm, with 3900 plates, is observed in 14 mm. Varying silica particle diameter among 900, 700 and 350 nm showed that decreasing particle diameter slightly improves resolution but slows the separation. Matrix-assisted laser desorption/ionization (MALDI)-MS of the proteins after separation is demonstrated by wicking sufficient sinapinic acid into the separation medium.  相似文献   

10.
Poly(l ‐lactic acid) is a linear aliphatic thermoplastic polyester that can be produced from renewable resources. A poly(l ‐lactic acid)‐modified silica stationary phase was newly prepared by amide bond reaction between amino groups on aminopropyl silica and carboxylic acid groups at the end of the poly(l ‐lactic acid) chain. The poly(l ‐lactic acid)‐silica column was characterized in reversed‐phase liquid chromatography and hydrophilic interaction liquid chromatography with the use of different mobile phase compositions. The poly(l ‐lactic acid)‐silica column was found to work in both modes, and the retention of test compounds depending on acetonitrile content exhibited “U‐shaped” curves, which was an indicator of reversed‐phase liquid chromatography/hydrophilic interaction liquid chromatography mixed‐mode retention behavior. In addition, carbonyl groups included into the poly(l ‐lactic acid) backbone work as an electron‐accepting group toward a polycyclic aromatic hydrocarbon and provide π–π interactions.  相似文献   

11.
Two polysaccharide stationary phases have been newly suggested for application in hydrophilic interaction chromatography (HILIC). Both columns (amylose‐silica, 250 × 4.6 mm, 5 μm and cellulose‐silica, 250 × 4.6 mm, 5 μm) demonstrated a satisfactory retention of polar compounds. The influence of the mobile‐phase composition (acetonitrile content, pH, salt concentration) on the retention was in agreement with the HILIC concept. The phases showed a very similar behavior, typical efficiency of about 50 000 plates/m, cellulose retained test compounds somewhat more strongly. Under the experimental conditions, electrostatic (non‐HILIC‐type) interactions due to the dissociation of silanol groups on the silica surface did not influence the retention, noticeably. The applicability of polysaccharide stationary phases for the chromatography of polar compounds was proven by the separation of mixtures of sugars (fructose, glucose, saccharose, maltose, trehalose) or vitamins (nicotinamide, pyridoxine, riboflavin, thiamine, nicotinic acid, ascorbic acid).  相似文献   

12.
Huang H  Guo H  Xue M  Liu Y  Yang J  Liang X  Chu C 《Talanta》2011,85(3):1642-1647
A novel glycosyl amino acid hydrophilic interaction chromatography (HILIC) stationary phase was prepared via click chemistry. The key intermediate N3-glycosyl d-phenylglycine was prepared by a three steps procedure, including selective condensation of amino glucose with N-succinimidyl ester of Boc-d-phenylglycine, deprotection and transformation of amino group to azido group. The structure of all the intermediates and functionalized silica beads were confirmed by 1H NMR, IR, elemental analysis and 13C CP-MAS. The chromatography test showed that this new type of separation material possessed good HILIC properties and glycopeptide enrichment characteristics. Nucleosides and bases could be separated in a simple eluent composition (only acetonitrile in combined with water), and with the same condition, these model compounds could not be separated on the commercial HILIC column (Atlantis). Click glycosyl amino acid thus prepared also showed longer retention and better separation ability in the separation of polar organic acids.  相似文献   

13.
Hydrophilic interaction chromatography (HILIC) has experienced increasing attention in recent years. Much research has been carried out in the area of HILIC separation mechanisms, column techniques and applications. Because of their good permeability, low resistance to mass transfer and easy preparation within capillaries, hydrophilic monolithic columns represent a trend among novel HILIC column techniques. This review attempts to present an overview of the preparation and applications of HILIC monolithic columns carried out in the past decade. The separation mechanism of various hydrophilic monolithic stationary phases is also reviewed.  相似文献   

14.
Hydrophilic interaction liquid chromatography (HILIC) can be performed on titania. To better understand the retention mechanisms on titania, a series of model carboxylates were used. Increasing acetonitrile above 60% dramatically increased the retention and efficiency for carboxylates. The effect of buffer type, buffer concentration, buffer pH and column temperature were also studied. Multiple retention mechanisms are operative on titania, and whether electrostatic repulsion, ligand exchange or HILIC dominates retention and separation depends on the eluent conditions. Guidelines for separations on titania are: (1) higher %ACN most improves retention and efficiency; (2) higher salt concentration increases retention; (3) elution strength is in the order acetate ? malate < methyl phosphonate ? phosphate; (4) electrostatic repulsion (ERLIC) is more operative at low %ACN than high %ACN. A bare titania column (150 mm × 4.6 mm I.D., 5 μm) was used for the separation of diphenylacetate, 4-nitrobenzoate, benzoate, 4-aminobenzoate, 4-hydroxybenzoate, phthalate, 3-aminophthalate, 1,3,5-benzenetricarboxylate, 1,2,4-benzenetricarboxylate, 1,2,4,5-benzenetetracarboxylate, benzenepentabenzoate and mellitate under HILIC conditions based on these guidelines, with efficiencies of 2800–55,000 plates/m.  相似文献   

15.
Porous silica coated by a highly hydrophilic and nonionic tentacle‐type polymeric layer was synthesized by free radical “grafting from” polymerization of N‐[2‐hydroxy‐1,1‐bis(hydroxymethyl)ethyl]‐2‐propenamide (TRIS‐acrylamide) in partly aqueous solutions. The radical initiator sites were incorporated on the silica surfaces via a two‐step reaction comprising thionyl chloride activation and subsequent reaction with tert‐butyl hydroperoxide. The surface‐bound tert‐butylperoxy groups were then used as thermally triggered initiators for graft polymerization of TRIS‐acrylamide. The synthesized materials were characterized by diffusive reflectance Fourier transform infrared specotroscopy, X‐ray photoelectron spectroscopy, and CHN elemental analysis. Photon correlation spectroscopy was used to determine changes in ζ‐potentials resulting from grafting, 29Si magic angle spinning nuclear magnetic resonance spectroscopy (MAS‐NMR) spectroscopy was used to assess the ratio of silanol to siloxane groups in the substrate and the grafted material, and the changes in surface area and mesopore distribution were determined by nitrogen cryosorption. Chromatographic evaluation in hydrophilic interaction chromatography (HILIC) mode showed that the materials were suitable for use as stationary phases, featuring good separation efficiency, a comparatively high retention, and a selectivity that differed from most commercially available HILIC phases. A comparison of this neutral phase with a previously reported N‐(2‐hydroxypropyl)‐linked TRIS‐type hydrophilic tentacle phase with weak anion exchange functionality revealed substantial differences in retention patterns.  相似文献   

16.
A novel sulfoalkylbetaine‐based zwitterionic organic‐silica hybrid monolith was synthesized by using 3‐dimethyl‐(3‐(N‐methacrylamido) propyl) ammonium propane sulfonate (DMMPPS, neutral sulfoalkyl‐betaine monomer). The added amount of zwitterionic monomer was significantly increased when DMMPPS was used instead of the conventionally used acidic sulfoalkyl‐betaine monomer, that is, the N,N‐dimethyl‐N‐ methacryloxyethyl‐N‐(3‐sulfopropyl) ammonium betaine, and this led to a significantly improved hydrophilicity of the monolith. The DMMPPS‐based organic‐silica hybrid monolith exhibited good mechanical stability and excellent separation performance. About ~20 μm plate height (corresponding to column efficiency of ~50 000 plates/m) was obtained for nucleoside at the linear velocity of 1 mm/s. The proposed monolithic column was successfully applied to separate purines/pyrimidines, nucleotides, and tryptic digest of bovine hemoglobin in a nano‐HILIC mode, and the results demonstrated that such monolith has the potential for separation of a variety of hydrophilic substances.  相似文献   

17.
Porous graphene (PG) was prepared by combustion method and then coated onto aminopropyl-silica in deep eutectic solvents (DESs). PG-modified silica was evaluated in hydrophilic interaction chromatography for the separation and determination of sulfonamides in human serum samples.  相似文献   

18.
This review summarizes the recent advances in the analysis of amino acids, peptides, and proteins using hydrophilic interaction chromatography. Various reports demonstrate the successful analysis of amino acids under such conditions. However, a baseline resolution of the 20 natural amino acids has not yet been published and for this reason, there is often a need to use mass spectrometry for detection to further improve selectivity. Hydrophilic interaction chromatography is also recognized as a powerful technique for peptide analysis, and there are a lot of papers showing its applicability for proteomic applications (peptide mapping). It is expected that its use for peptide mapping will continue to grow in the future, particularly because this analytical strategy can be combined with reversed‐phase liquid chromatography, in a two‐dimensional setup, to reach very high resolving power. Finally, the interest in hydrophilic interaction chromatography for intact proteins analysis is less evident due to possible solubility issues and a lack of suitable hydrophilic interaction chromatography stationary phases. To date, it has been successfully employed only for the characterization of membrane proteins, histones, and the separation of glycosylated isoforms of an intact glycoprotein. From our point of view, the number of hydrophilic interaction chromatography columns compatible with intact proteins (higher upper temperature limit, large pore size, etc.) is still too limited.  相似文献   

19.
20.
Radix isatidis is a famous anti‐influenza virus herbal medicine traditionally taken as a water decoction. However, the chemical fingerprint analysis of Radix isatidis is dominantly based on RPLC, from which it is difficult to obtain fingerprint information of hydrophilic compounds. Here, we developed the separation of Radix isatidis by RPLC and hydrophilic interaction chromatography, comparing the traditional RPLC fingerprint with the hydrophilic interaction chromatography fingerprint. Besides, an anti‐viral assay of Radix isatidis was conducted to evaluate its efficacy. The fingerprint–efficacy relationships between the fingerprints and the anti‐viral activity were further investigated with principal component regression analysis. The results showed that the anti‐viral activity correlated better with the hydrophilic interaction chromatography fingerprint than with the RPLC fingerprint. This study indicates that hydrophilic interaction chromatography could not only be a complementary method to increase the fingerprint coverage of conventional RPLC fingerprint, but also can better represent the efficacy and quality of Radix isatidis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号