首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
杨磊  张赟星  汪小琴 《应用化学》2018,35(7):781-787
为设计新型布洛芬缓释体系提供实验依据,以氯化镁、氯化铝、布洛芬(IBU)及淀粉等为原料,采取共沉淀-焙烧还原法及冷冻-解冻法,制备了层状双氢氧化物-布洛芬插层复合物(LDH-IBU)、淀粉凝胶-布洛芬复合物(淀粉凝胶-IBU)及层状双氢氧化物/淀粉凝胶-布洛芬插层复合物(LDH/淀粉凝胶-IBU)。 通过傅里叶红外光谱仪(FT-IR)、X射线衍射仪(XRD)表征了上述3种复合物的结构,并研究了它们在模拟人体环境条件下的缓释性能。 结果表明,3种复合物中的IBU在不同的缓释介质中都具有一定的缓释效果,复合物释放速率大小为:LDH/淀粉凝胶-IBU>LDH-IBU>淀粉凝胶-IBU;在pH值为6.6和7.4以及0.9%生理盐水3种缓冲介质中释放速率依次减小。 释放动力学均符合准一级动力学方程。  相似文献   

2.
The first generation anionic iron(III) porphyrin [Fe(TSPP)] and the second generation anionic complexes [Fe(TDFSPP)], [Fe(TCFSPP)], and [Fe(TDCSPP)] were immobilized into three-dimensionally macroporous layered double hydroxide (3DM-LDH), using the direct reconstruction of 3DM-LDH from macroporous mixed oxides MOX or the anionic exchange on DDS intercalated 3DM-LDH. The macroporous layered double hydroxides were obtained at the surface of nanometric polystyrene spheres, which were synthesized by an inverse opal method. Polystyrene was removed after calcination in oxidizing atmosphere, nanostructured mixed oxides (3DM-MOX) were obtained, which after reconstruction give origin to macroporous layered double hydroxide (3DM-LDH). Following metalloporphyrin immobilization, the resulting materials were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), UV–vis (glycerin mull) spectroscopy, attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FTIR), and electron paramagnetic resonance (EPR). Results revealed that the complexes are either immobilized at the surface of the macroporous layered double hydroxide or intercalated between the layers, displacing some dodecylsufate anions. The obtained materials were investigated as catalysts for oxidation reactions, to find out whether they function as cytochrome P-450 models.  相似文献   

3.
A site‐selective controlled delivery system for controlled drug release is fabricated through the in situ assembly of stimuli‐responsive ordered SBA‐15 and magnetic particles. This approach is based on the formation of ordered mesoporous silica with magnetic particles formed from Fe(CO)5 via the surfactant‐template sol‐gel method and control of transport through polymerization of N‐isopropyl acrylamide inside the pores. Hydrophobic Fe(CO)5 acts as a swelling agent as well as being the source of the magnetic particles. The obtained system demonstrates a high pore diameter (7.1 nm) and pore volume (0.41 cm3 g?1), which improves drug storage for relatively large molecules. Controlled drug release through the porous network is demonstrated by measuring the uptake and release of ibuprofen (IBU). The delivery system displays a high IBU storage capacity of 71.5 wt %, which is almost twice as large as the highest value based on SBA‐15 ever reported. In vitro testing of IBU loading and release exhibits a pronounced transition at around 32 °C, indicating a typical thermosensitive controlled release.  相似文献   

4.
The model drugs ibuprofen (IBU) and tegafur (T-Fu) were loaded into poly[N-isopropylacrylamide-co-(acryloyl beta-cyclodextrin)] [P(NIPA-co-A-CD)] and PNIPA hydrogels by immersing dried gels in IBU or T-Fu alcohol solutions until they reached equilibrium. Drug release studies were carried out in water at 25 degrees C. In contrast to the release time of conventional PNIPA hydrogel, that of IBU from the beta-CD incorporated hydrogel was significantly prolonged and the drug loading was also greatly increased, which may be the result of the formation of inclusion complexes between CD and ibuprofen. However, another hydrophilic drug, tegafur, did not display these properties because it could not form a complex with the CD groups. [diagram in text].  相似文献   

5.
A core-shell structured magnetic layered organic-inorganic material involving 5-aminosalicylic acid (5-ASA) intercalated Zn-Al layered double hydroxides (LDHs) and magnesium ferrite (MgFe2O4) is assembled by a coprecipitation method. The powder X-ray diffraction results show the coexistence of the clear but weak diffractions of MgFe2O4 and ordered relatively stronger reflections of 5-ASA intercalated LDHs. The TEM image of magnetic 5-ASA intercalated LDHs reveals that the LDHs layer covers the MgFe2O4 particles or their aggregates with particle size of 50-80 nm. The vibration sample magnetization (VSM) measurements exhibit the increase in saturation magnetization of magnetic 5-ASA intercalated LDHs samples with increasing amount of magnetic core. The XPS analyses account for a majority of Zn, Al and O atoms on the surface of magnetic particles. It is suggested that the magnetic core MgFe2O4 was coated with LDHs layer probably through Zn-O-Mg and Al-O-Mg linkages, and a core-shell structured model is tentatively proposed.  相似文献   

6.
The syntheses, structures, and magnetic properties of the compounds of formula [Fe (III)(sal 2trien)] 2[Mn (II) 2(ox) 3].4H 2O.C 3H 7NO ( 1) and [In (III)(sal 2trien)] 2[Mn (II) 2(ox) 3].3H 2O.CH 3OH (2) are reported. The structure presents a homometallic 2D honeycomb anionic layer formed by Mn (II) ions linked through oxalate ligands and a cationic double layer of [Fe(sal 2trien)] (+) or [In(sal 2trien)] (+) complexes intercalated between the 2D oxalate network. The magnetic properties and M?ssbauer spectroscopy of 1 indicate the coexistence of a magnetic ordering of the Mn(II) oxalate network that behaves as a weak ferromagnet and a gradual spin crossover of the intercalated [Fe(sal 2trien)] (+) complexes.  相似文献   

7.
Luminescent benzocarbazole anions (BCZC) intercalated into the interlayer region of Mg-Al-layered double hydroxides (BCZC/LDH) with different layered charge densities (LCD) were prepared. The structure and chemical composition of the composites were characterized by X-ray diffraction, elemental analysis, thermogravimetry and differential thermal analysis (TG-DTA), infrared spectra (FT-IR), UV-vis absorption and fluorescence spectroscopy. The photoemission behavior of BCZC in the LDH matrix with high (Mg/Al ratio = 1.801) and low (Mg/Al ratio = 3.132) LCD is similar to that of BCZC solid and aqueous solution states respectively, indicating that the luminescence performances of the intercalated dye anions can be tuned by adjusting the LCD of the LDH layer. Moreover, the thermal stability and stacking order of BCZC are largely improved upon intercalation, and the BCZC/LDH thin film exhibits well polarized luminescence with the luminescent anisotropy of 0.15-0.20. In addition, molecular dynamics (MD) simulation was employed to calculate the basal spacing and molecular arrangement of the intercalated BCZC within the LDH matrix. The simulation results show that the distribution of BCZC anions is much broader in the gallery of Mg-Al-LDH with high LCD, while BCZC anions exhibit a more ordered arrangement in LDH with low LCD. Furthermore, the radial distribution functions of interlayer water molecules were also studied. Based on the combination of experiment and theoretical simulation, this work provides a detailed understanding of the tunable photoluminescence, orientation and diffusion behavior of the luminescent molecules confined within the gallery of a 2D inorganic matrix.  相似文献   

8.
Dong  Yanmao  Zhu  Yugang  Dai  Xu  Zhao  Dan  Zhou  Xing  Qi  Yu  Koo  Joseph H. 《Journal of Thermal Analysis and Calorimetry》2015,121(1):135-144
Journal of Thermal Analysis and Calorimetry - To improve the flame retardancy and mechanical properties of epoxy (EP), a novel intercalated layered double hydroxides (ILDHs) were synthesized by a...  相似文献   

9.
Mg-Al layered double hydroxide (LDH) intercalated with glycinate anions was synthesized through co-precipitation and exfoliated in formamide and the single-layer suspension was reacted with aqueous iron porphyrin solutions (Fe(TDFSPP) and Fe(TCFSPP)). The obtained materials were characterized by X-ray powder diffraction, UV-vis, and electron paramagnetic resonance and investigated in the oxidation reaction of cyclooctene and cyclohexane using iodosylbenzene as oxidant. The iron porphyrin seems to be immobilized at the surface of the glycinate intercalated LDH. The catalytic activities obtained in heterogeneous media for iron porphyrin, Fe(TDFSPP), was superior to the results obtained under homogeneous conditions, but the opposite effect was observed on the Fe(TCFSPP), indicating that, instead of the structural similarity of both iron porphyrins (second-generation porphyrins), the immobilization of each one produced different catalysts. The best catalytic activity of the Fe(TDFSPP)/Gly-LDH, compared to Fe(TCFSPP)/Gly-LDH, can be explained by the easy access of the oxidant and the substrate to the catalytic sites in the former, probably located at the surface of the layered double hydroxide pillared with glycinate anions. A model for the immobilization and a mechanism for the oxidation reaction will be discussed.  相似文献   

10.
Luminescent and mesoporous Eu(3+)/Tb(3+) doped calcium silicate microspheres (LMCS) were synthesized by using mesoporous silica spheres as the templates. The LMCS and drug-loaded samples were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), N(2) adsorption/desorption, and photoluminescence (PL) spectra. The results reveal that the LMCS have uniform spherical morphology with a diameter around 400 nm and the mesopore size of 6 nm. The prepared samples exhibit little cytotoxicity at concentrations below 5 mg mL(-1) via MTT assay. In addition, drug storage/release properties of the LMCS were demonstrated for ibuprofen (IBU). The obtained LMCS can be used to encapsulate drugs and release them. Under excitation by UV light, the IBU-loaded samples still show the characteristic (5)D(0)-(7)F(1-3) emission lines of Eu(3+) and the characteristic (5)D(4)-(7)F(3-6) emission lines of Tb(3+). The PL intensity of Eu(3+) in the drug carrier system increases with the cumulative released amount of IBU, making the drug release able to be tracked or monitored by the change of luminescence of Eu(3+). The LMCS reported here with mesoporous structure, good biocompatibility and luminescent property can be a promising drug delivery carrier.  相似文献   

11.
A series of layered oxides of nominal composition SrFe(1-x)Mn(x)O(2) (x = 0, 0.1, 0.2, 0.3) have been prepared by the reduction of three-dimensional perovskites SrFe(1-x)Mn(x)O(3-δ) with CaH(2) under mild temperature conditions of 583 K for 2 days. The samples with x = 0, 0.1, and 0.2 exhibit an infinite-layer crystal structure where all of the apical O atoms have been selectively removed upon reduction. A selected sample (x = 0.2) has been studied by neutron powder diffraction (NPD) and X-ray absorption spectroscopy. Both techniques indicate that Fe and Mn adopt a divalent oxidation state, although Fe(2+) ions are under tensile stress whereas Mn(2+) ions undergo compressive stress in the structure. The unit-cell parameters progressively evolve from a = 3.9932(4) ? and c = 3.4790(4) ? for x = 0 to a = 4.00861(15) ? and c = 3.46769(16) ? for x = 0.2; the cell volume presents an expansion across the series from V = 55.47(1) to 55.722(4) ?(3) for x = 0 and 0.2, respectively, because of the larger effective ionic radius of Mn(2+) versus Fe(2+) in four-fold coordination. Attempts to prepare Mn-rich compositions beyond x = 0.2 were unsuccessful. For SrFe(0.8)Mn(0.2)O(2), the magnetic properties indicate a strong magnetic coupling between Fe(2+) and Mn(2+) magnetic moments, with an antiferromagnetic temperature T(N) above room temperature, between 453 and 523 K, according to temperature-dependent NPD data. The NPD data include Bragg reflections of magnetic origin, accounted for with a propagation vector k = ((1)/(2), (1)/(2), (1)/(2)). A G-type antiferromagnetic structure was modeled with magnetic moments at the Fe/Mn position. The refined ordered magnetic moment at this position is 1.71(3) μ(B)/f.u. at 295 K. This is an extraordinary example where Mn(2+) and Fe(2+) ions are stabilized in a square-planar oxygen coordination within an infinite-layer structure. The layered SrFe(1-x)Mn(x)O(2) oxides are kinetically stable at room temperature, but in air at ~170 °C, they reoxidize and form the perovskites SrFe(1-x)Mn(x)O(3-δ). A cubic phase is obtained upon reoxidation of the layered compound, whereas the starting precursor SrFeO(2.875) (Sr(8)Fe(8)O(23)) was a tetragonal superstructure of perovskite.  相似文献   

12.
Abstract

A novel drug-polysaccharide conjugate with konjac glucomannan (KGM) as a drug carrier was fabricated through the esterification of ibuprofen (IBU), an anti-inflammatory drug, with KGM. The influences of the reaction conditions, such as the amount of ibuprofen acryl chloride, reaction time, reaction temperature, and the amount of catalyst, on the degree of substitution were investigated. KGM ibuprofen ester (KGM-IBU) was characterized by Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD), solid-state 13C NMR, scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The hydrophobic structure of IBU in KGM-IBU was proven by the fluorescence emission spectra of pyrene. In addition, by using commercially available ibuprofen sustained-release capsules (IBU-SRC) as a control, the in vitro controlled release performance of KGM-IBU was evaluated. The cumulative release of IBU-SRC within 36?h was 94%, while that of KGM-IBU within 36?h was 77%. The results showed that KGM-IBU had better sustained-release performance without a burst release effect. The obtained products could be used as a potential biocompatible sustained-release drug delivery system.  相似文献   

13.
A chemical precursor mediated process was used to form catalyst nanoparticles (NPs) with an extremely high density (10(14) to 10(16) m(-2)), controllable size distribution (3-20 nm), and good thermal stability at high temperature (900 °C). This used metal cations deposited in layered double hydroxides (LDHs) to give metal catalyst NPs by reduction. The key was that the LDHs had their intercalated anions selected and exchanged by guest-host chemistry to prevent sintering of the metal NPs, and there was minimal sintering even at 900 °C. Metal NPs on MoO(4)(2-) intercalated Fe/Mg/Al LDH flakes were successfully used as the catalyst for the double helix growth of single-walled carbon nanotube arrays. The process provides a general method to fabricate thermally stable metal NPs catalysts with the desired size and density for catalysis and materials science.  相似文献   

14.
A series of pharmaceutically active compounds including diclofenac, gemfibrozil, ibuprofen, naproxen, 2-propylpentanoic acid, 4-biphenylacetic acid and tolfenamic acid can be reversibly intercalated into a layered double hydroxide, initial studies suggest that these materials may have application as the basis of a novel tuneable drug delivery system.  相似文献   

15.
Solid dispersions (SDs) of ibuprofen (IBU) were prepared with four carriers: Kollidon 25, Kollidon 30, Kollidon VA64, and Kollidon CL, using a newly developed pulse combustion dryer system, HYPULCON. Physicochemical properties of the SDs obtained were investigated by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), scanning electron microscope (SEM), and Fourier transformation IR spectroscopy (FT-IR). Powder X-ray diffraction (PXRD) showed that the crystal diffraction peaks of IBU in SDs disappeared completely, and in differential scanning calorimetry (DSC) curves, the endothermic peaks of IBU in SDs were not observed. Fourier transformation IR spectroscopy (FT-IR) proved that interactions between the drug and carrier existed. These findings demonstrated that IBU changed to an amorphous form in the SDs with the four carriers using the pulse combustion dryer system. The dissolution property of IBU in the SDs was markedly enhanced. The dissolution test showed that after 5 min of dissolution, the concentrations of IBU in the SDs with Kollidon CL as the carrier was 43.81 mug/ml, corresponding to 13.0 times that of pure IBU. So, it is demonstrated that the pulse combustion dryer system is very useful for preparing SDs of IBU with Kollidon of different grades as carriers.  相似文献   

16.
A method for quantitative determination of ibuprofen (IBU), naproxen (NAP), methyl salicylate (MES) and menthol (MNT) in commercial topical gels and ointments using partial least squares (PLS) models based on FT-Raman spectra is described. The calculated relative standard errors of prediction (RSEP) were found to be in the range of 2.1–3.2% for the calibration and validation data sets. Two commercial topical gels containing 5.0% of IBU and 10% of NAP (w/w), as well as one ointment containing 15% of MES and 10% of MNT (w/w) as active pharmaceutical ingredients (APIs), were successfully quantified using the developed models with recoveries in the 99.2–101.5% range. The proposed procedure can be used as a fast, reliable and economic method for the quantification of APIs in topical gels and ointments.  相似文献   

17.
Luminescent, mesoporous, and bioactive europium-doped calcium silicate (MCS: Eu) was successfully synthesized. The obtained MCS: Eu(3+) was performed as a drug delivery carrier to investigate the drug storage/release properties using ibuprofen (IBU) as the model drug. The structural, morphological, textural, and optical properties were well characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N(2) adsorption/desorption, and photoluminescence (PL) spectra, respectively. The results reveal that the MCS: Eu exhibits the typical ordered characteristics of the mesostructure. This composite shows a sustained release profile with IBU as the model drug. The IBU-loaded samples still present red luminescence of Eu(3+) ((5)D(0)-(7)F(1,2)) under UV irradiation. The emission intensities of Eu(3+) in the drug carrier system vary with the amount of released IBU, making the drug release easily tracked and monitored. The system demonstrates a great potential for drug delivery and disease therapy.  相似文献   

18.
In this contribution, powdered activated carbons (ACs) from cork waste were supported for bar adsorptive micro-extraction (BAμE), as novel adsorbent phases for the analysis of polar compounds. By combining this approach with liquid desorption followed by high performance liquid chromatography with diode array detection (BAμE(AC)-LD/HPLC-DAD), good analytical performance was achieved using clofibric acid (CLOF) and ibuprofen (IBU) model compounds in environmental and biological matrices. Assays performed on 30 mL water samples spiked at the 25.0 μg L(-1) level yielded recoveries around 80% for CLOF and 95% for IBU, under optimized experimental conditions. The ACs textural and surface chemistry properties were correlated with the results obtained. The analytical performance showed good precision (<15%), suitable detection limits (0.24 and 0.78 μg L(-1) for CLOF and IBU, respectively) and good linear dynamic ranges (r(2)>0.9922) from 1.0 to 600.0 μg L(-1). By using the standard addition methodology, the application of the present approach to environmental water and urine matrices allowed remarkable performance at the trace level. The proposed methodology proved to be a viable alternative for acidic pharmaceuticals analysis, showing to be easy to implement, reliable, sensitive and requiring low sample volume to monitor these priority compounds in environmental and biological matrices.  相似文献   

19.
Intercalation of an organic photochromic molecule into layered magnetic systems may provide multifunctional properties such as photomagnetism. To build up a photosensitive multifunctional magnet, an organic-inorganic hybrid system coupled with a photochromic diarylethene anion, 2,2'-dimethyl-3,3'-(perfluorocyclopentene-1,2-diyl)bis(benzo[b]thiophene-6-sulfonate) (DAE), and cobalt LDHs (layered double hydroxides), Co4(OH)7(DAE)0.5.3H2O, was synthesized by the anion exchange reaction between Co2(OH)3(CH3COO).H2O and DAE. In the dark and under UV-irradiated (313 nm) conditions, Co4(OH)7(DAE)0.5.3H2O with open and closed forms of DAE were obtained, respectively. The magnetic susceptibility measurements elucidated ferromagnetic intra- and interlayer interactions and Curie temperatures of TC = 9 and 20 K for cobalt LDHs with the open and closed forms of DAE, respectively. The enhancement of the Curie temperature from 9 to 20 K by substitution of the open form of DAE with the closed form of DAE as an intercalated molecule is attributed to the delocalization of the pi-electrons in the closed form of DAE, which enhances the interlayer magnetic interaction. The enhancement of the interlayer magnetic interaction induced by the delocalization of pi-electrons in intercalated molecules is strongly supported by the fact that the Curie temperature (26.0 K) of cobalt LDHs with (E,E)-2,4-hexadienedioate having a conjugated pi-electron system is enormously higher than that (7.0 K) of the cobalt LDHs with hexanedioate. By UV irradiation at 313 nm, Co4(OH)7(DAE)0.5.3H2O shows the photoisomerization of DAE from the open form to the closed one in the solid state, which leads to the enhancement of Curie temperature.  相似文献   

20.
利用加热均匀、迅速、热平稳性好和安全性高的微波热响应来实现药物的微波可控释放。引入具有微波热响应性质、热稳定性和化学稳定性好的MoO3作为微波吸收物质,制备了核-隔层-壳结构Fe3O4@MoO3@mSiO2纳米药物载体。研究该纳米载体对药物布洛芬(IBU)的负载和微波响应可控释放过程。该纳米载体具有高的比表面积(222 cm2·g-1)和较大的孔隙体积(0.14 cm3· g-1)可用来负载药物。同时还具有较好的磁响应性,可实现药物的靶向给药,具有相对好的微波热响应性,可通过MoO3中间层吸收微波辐射实现药物的可控释放。结果表明,在持续微波辐射360 min时IBU的释放率达到86%,远远高于仅搅拌时的释放率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号