首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
5-[4-(N-tert-butyl-N-aminoxyl)phenyl]pyridimine (4NITPhPyrim = RL) forms a 1-D ladder polymer complex with Co(hfac)2 of stoichiometry Co3(RL)2(hfac)6, having antiparallel [Co(II)RL]n linear chains (rails) that are cross-linked by Pyrim-Co(hfac)2-Pyrim rungs. The magnetic behavior above 100 K is consistent with contributions from one high-spin Co(II) ion (the cross-link, S = 3/2) plus two Co-ON units with strongly antiferromagnetic (AFM) metal-radical exchange (each S = 1). The chiT data show an AFM downturn as the temperature drops. Assuming weak exchange along chain portions of the polymer due to poor spin polarization across the phenyl-pyrimidine bond in RL, a linear three-spin (S = 1, 3/2, and 1) fit to the T > 18 K data yields an AFM cross-linker (rung) effective exchange of J(CL)/k = (-)5.3 K = (-)3.7 cm(-)(1). Superexchange (sigma-orbital overlap) is a likely mechanism for the effective AFM exchange between CoON and Co spin sites in the three-spin groupings.  相似文献   

2.
A series of isostructural cyano-bridged Mn(III)(h.s.)-M(III)(l.s.) alternating chains, [Mn(III)(5-TMAMsalen)M(III)(CN)(6)]?4H(2)O (5-TMAMsalen(2-)=N,N'-ethylenebis(5-trimethylammoniomethylsalicylideneiminate), Mn(III)(h.s.)=high-spin Mn(III), M(III)(l.s.)=low-spin Co(III), Mn-Co; Fe(III), Mn-Fe; Mn(III), Mn-Mn; Cr(III), Mn-Cr) was synthesized by assembling [Mn(III)(5-TMAMsalen)](3+) and [M(III)(CN)(6)](3-). The chains present in the four compounds, which crystallize in the monoclinic space group C2/c, are composed of an [-Mn(III)-NC-M(III)-CN-] repeating motif, for which the -NC-M(III)-CN- motif is provided by the [M(III)(CN)(6)](3-) moiety adopting a trans bridging mode between [Mn(III)(5-TMAMsalen)](3+) cations. The Mn(III) and M(III) ions occupy special crystallographic positions: a C(2) axis and an inversion center, respectively, forming a highly symmetrical chain with only one kind of cyano bridge. The Jahn-Teller axis of the Mn(III)(h.s.) ion is perpendicular to the N(2)O(2) plane formed by the 5-TMAMsalen tetradentate ligand. These Jahn-Teller axes are all perfectly aligned along the unique chain direction without a bending angle, although the chains are corrugated with an Mn-N(axis) -C angle of about 144°. In the crystal structures, the chains are well separated with the nearest inter-chain M???M distance being relatively large at 9?? due to steric hindrance of the bulky trimethylammoniomethyl groups of the 5-TMAMsalen ligand. The magnetic properties of these compounds have been thoroughly studied. Mn-Fe and Mn-Mn display intra-chain ferromagnetic interactions, whereas Mn-Cr is characterized by an antiferromagnetic exchange that induces a ferrimagnetic spin arrangement along the chain. Detailed analyses of both static and dynamic magnetic properties have demonstrated without ambiguity the single-chain magnet (SCM) behavior of these three systems, whereas Mn-Co is merely paramagnetic with S(Mn)=2 and D/k(B)=-5.3?K (D being a zero-field splitting parameter). At low temperatures, the Mn-M compounds with M=Fe, Mn, and Cr display remarkably large M versus H hysteresis loops for applied magnetic fields along the easy magnetic direction that corresponds to the chain direction. The temperature dependence of the associated relaxation time for this series of compounds systematically exhibits a crossover between two Arrhenius laws corresponding to infinite-chain and finite-chain regimes for the SCM behavior. These isostructural hetero-spin SCMs offer a unique series of alternating [-Mn-NC-M-CN-] chains, enabling physicists to test theoretical SCM models between the Ising and Heisenberg limits.  相似文献   

3.
New amphiphilic and spin-labile Mn(III) complexes based on dianionic N(4)O(2)-hexadentate sal(2)trien or sal(2)bapen ligands, which contain OC(6)H(13), OC(12)H(25), or OC(18)H(37) alkoxy substituents at different positions of the salicylidene unit were prepared (H(2)sal(2)trien = N,N'-bis(salicylidene)-1,4,7,10-tetraazadecane, H(2)sal(2)bapen = N,N'-bis(salicylidene)-1,5,8,12-tetraazadodecane). According to electrochemical measurements, these complexes undergo two (quasi)reversible redox processes. Temperature-dependent magnetic measurements revealed a high-spin configuration for all sal(2)trien complexes (S = 2) and gradual spin crossover for sal(2)bapen complexes from high to low spin (S = 1). The chain length strongly influences the spin crossover, as C(18)-functionalization stabilizes the low spin state at much higher temperatures than shorter alkyl chains. Moreover, long alkyl chains allow for spontaneous self-assembly of the molecules, which was investigated in single crystals and in Langmuir-films at the air-water interface. Long alkyl chains (C(12) or C(18)) as well as a mutual syn-orientation of these molecular recognition sites were required for the Langmuir monolayers to be stable.  相似文献   

4.
The new compound LiNaCo[PO(4)]F was synthesized by a solid state reaction route, and its crystal structure was determined by single-crystal X-ray diffraction measurements. The magnetic properties of LiNaCo[PO(4)]F were characterized by magnetic susceptibility, specific heat, and neutron powder diffraction measurements and also by density functional calculations. LiNaCo[PO(4)]F crystallizes with orthorhombic symmetry, space group Pnma, with a = 10.9334(6), b = 6.2934(11), c = 11.3556(10) ?, and Z = 8. The structure consists of edge-sharing CoO(4)F(2) octahedra forming CoFO(3) chains running along the b axis. These chains are interlinked by PO(4) tetrahedra forming a three-dimensional framework with the tunnels and the cavities filled by the well-ordered sodium and lithium atoms, respectively. The magnetic susceptibility follows the Curie-Weiss behavior above 60 K with θ = -21 K. The specific heat and magnetization measurements show that LiNaCo[PO(4)]F undergoes a three-dimensional magnetic ordering at T(mag) = 10.2(5) K. The neutron powder diffraction measurements at 3 K show that the spins in each CoFO(3) chain along the b-direction are ferromagnetically coupled, while these FM chains are antiferromagnetically coupled along the a-direction but have a noncollinear arrangement along the c-direction. The noncollinear spin arrangement implies the presence of spin conflict along the c-direction. The observed magnetic structures are well explained by the spin exchange constants determined from density functional calculations.  相似文献   

5.
Powder and single-crystal optical absorption of the ferrimagnet MnIICuII(pba)(H2O)(3).2H2O (denoted MnCu) and the Mn-doped compound Mn0.1Mg0.9Cu(pba)(H2O)(3).2H2O (denoted Mn0.1Mg0.9Cu) with pba standing for 1,3-propylenebis(oxamato) was investigated in the 10-300 K range. The crystal structure of MnCu was previously reported, and consists of bimetallic chains with octahedral MnII and square pyramidal CuII ions linked by oxamato bridges, MnCu and Mn0.1Mg0.9Cu being isostructural. The spectra of both MnCu and Mn0.1Mg0.9Cu show an important dichroism along the chain direction, due to the strong polarization of the CuII band at around 16,000 cm-1 in this direction. They exhibit narrow and intense spin-forbidden MnII transitions in the 24,000-25,000 cm-1 range, which are activated by an exchange mechanism. The polarization and thermal dependence of the 6A1g-->4A1g, 4Eg(G) MnII transitions were recorded. The polarization along the chain axis was interpreted in the framework of the pair mechanism first introduced by Tanabe and co-workers. A theoretical expression for the thermal dependence of the intensity was derived by considering the CuII spin as a quantum spin and the MnII spin as a classical spin, and compared with the experimental data. The interaction parameter between the local ground states has been found to be J = -25 cm-1 using the spin Hamiltonian H = -J sigma i(SMn,iSCu,i + SMn,i+1SCu,i). The spectra of Mn0.1Mg0.9Cu showed cold and hot bands, whose energy difference is directly related to J and the interaction parameter J* between the CuII ion in its ground state and the MnII ion in its spin-flip excited state. J* has been estimated to be +40 cm-1. These results have been compared to those obtained with other MnIICuII compounds. The complementarity between optical and magnetic properties has been discussed.  相似文献   

6.
Koo HJ  Whangbo MH  Lee KS 《Inorganic chemistry》2003,42(19):5932-5937
The CrVO(4)-type magnetic oxides MM'O(4) consist of edge-sharing MO(4) octahedral chains condensed with M'O(4) tetrahedra and exhibit a wide variety of magnetic structures. The magnetic properties of these oxides were examined by studying their spin exchange interactions on the basis of spin dimer analysis. The nature and magnitudes of the intra- and interchain spin exchange interactions depend on the square-to-rectangle distortion in the basal planes of the MO(4) chain and on the difference between the M 3d and O 2p orbital energies. The spiral magnetic structures of beta-CrPO(4) and MnSO(4) originate from the pseudohexagonal arrangement of the MO(4) chains and the frustrated interchain antiferromagnetic interactions.  相似文献   

7.
The synthesis, X-ray crystal structure, and magnetic studies of a rare example of organic/inorganic spin hybrid clusters extended in infinite ladder-type chain [Cu(C5F6HO2)2]7(C35H35N5O4)2 ([Cu(hfac)2]7(pyacbisNN)2, 2) formed by the reaction of a high spin nitronylnitroxide biradical C35H35N5O4 (pyacbisNN, 1) and bis(hexafluroacetylacetonate)copper(II) = Cu(hfac)2 are described. Single-crystal X-ray structure analysis revealed the triclinic P1 space group of 2 with the following parameters: a = 10.6191(4) A, b = 19.6384(7) A, c = 21.941(9) A, alpha = 107.111(7) degrees, beta = 95.107(8) degrees, gamma = 94.208(0) degrees , Z = 2. Each repeating unit in 2 carries a centrosymmetric cyclic six spin and a linear five spin cluster with four different copper coordination environments having octahedral and square planar geometries. These clusters are interconnected to form infinite chains which are running along the crystallographic b axis. The magnetic measurements show nearly paramagnetic behavior with very small variations over a large temperature range. The magnetic properties are thus result of complex competitions of many weak ferro- and antiferromagnetic interactions, which appear as small deviations from quite linear mu(eff) vs T dependence at low temperature. At high temperature (300-14 K), antiferromagnetic behavior dominates a little, while at very low temperature (14-2 K), a small increase of mu(eff) was observed. The magnetic susceptibility data are described by the Curie-Weiss law [chi = C/(T - theta)] with the optimal parameters C = 4.32 +/- 0.01 emuK/mol and theta = - 0.6 +/- 0.3 K, where C is the Curie constant and theta is the Weiss temperature.  相似文献   

8.
The distorted wolframite-type oxides CuWO4 and CuMoO4-III have a structure in which CuO4 zigzag chains, made up of cis-edge-sharing CuO6 octahedra, run along the c-direction and hence exhibit low-dimensional magnetic properties. We examined the magnetic structures of these compounds and their isostructural analogue Cu(Mo(0.25)W0.75)O4 on the basis of the spin-orbital interaction energies calculated for their spin dimers. Our study shows that these compounds consist of two-dimensional (2D) magnetic sheets defined by one superexchange (intrachain Cu-O-Cu) and three super-superexchange (interchain Cu-O.O-Cu) paths, the strongly interacting spin units of these 2D magnetic sheets are the two-leg antiferromagnetic (AFM) ladder chains running along the (a + c)-direction, and the spin arrangement between adjacent AFM ladder chains leads to spin frustration. The similarities and differences in the magnetic structures of CuWO4, CuMoO4-III, and Cu(Mo(0.25)W0.75)O4 were discussed by examining how adjacent AFM ladder chains are coupled via the superexchange paths in the 2D magnetic sheets and how adjacent 2D magnetic sheets are coupled via another superexchange paths along the c-direction. Our study reproduces the experimental finding that the magnetic unit cell is doubled along the a-axis in CuWO(4) and along the c-axis in CuMoO4-III and predicts that the magnetic unit cell should be doubled along the a- and b-axes in Cu(Mo(0.25)W0.75)O4. In the understanding of the strength of a super-superexchange interaction, the importance of the geometrical factors controlling the overlap between the tails of magnetic orbitals was pointed out.  相似文献   

9.
A magneto-optical study has been undertaken of the mixed-valence single-molecule magnet [Mn(IV)(4)Mn(III)(8)O(12)L(16)] in which the ligands, L, are acetate (Mn(12)Ac) or the long-chain carboxylic acid, C(14)H(29)COOH (Mn(12)C(15)), that confers better solubility in organic solvents. Thin polymer films of these compounds in poly(methyl methacrylate) (PMM) have been cast by solvent evaporation to provide samples suitable for variable-temperature and field magnetic circular dichroism (MCD) studies. The absorption spectra in isotropic light are featureless, whereas the low-temperature MCD spectra contain resolved peaks, both positive and negative. MCD magnetization curves measured at temperatures above 4.2 K have established a ground-state spin of S = 10 and an axial zero-field parameter, D, of -0.61 K, similar to that determined for single crystals of Mn(12)Ac. By studying at a variety of optical wavelengths, the polarization ratios of the optical transitions relative to the unique axis of the zero-field distortion have been determined. The MCD magnetization curves measured at 4.2 K between 0 and 5 T for the case of Mn(12)C(15) in the PMM film can be fitted only on the assumption of nonrandom distribution of molecular z-axes arising from stresses in the polymer film during the process of casting. MCD-detected hysteresis curves measured in both frozen solution and PMM films, below the blocking temperature of approximately 3 K, show a high retention of spin polarization after reduction to zero of a polarizing magnetic field. This generates intense zero-field circular dichroism (CD) with maximum intensity for xy-polarized optical transitions whose sign depends on the direction of the original polarizing field. The optical polarization and the selection rules for MCD select a subset of molecular orientations with respect to the direction of field. Thus, the magnetically induced CD provides a highly sensitive and rapid optical method of reading the spin polarization of molecular magnets.  相似文献   

10.
In the isostructural oxides Ca(3)CoMO(6) (M = Co, Rh, Ir), the CoMO(6) chains made up of face-sharing CoO(6) trigonal prisms and MO(6) octahedra are separated by Ca atoms. We analyzed the magnetic and electronic properties of these oxides on the basis of density functional theory calculations including on-site repulsion and spin-orbit coupling, and examined the essential one-electron pictures hidden behind results of these calculations. Our analysis reveals an intimate interplay between Jahn-Teller instability, uniaxial magnetism, spin arrangement, metal-metal interaction, and spin-orbit coupling in governing the magnetic and electronic properties of these oxides. These oxides undergo a Jahn-Teller distortion, but their distortions are weak, so that their trigonal-prism Co(n+) (n = 2, 3) ions still give rise to strong easy-axis anisotropy along the chain direction. As for the d-state split pattern of these ions, the electronic and magnetic properties of Ca(3)CoMO(6) (M = Co, Rh, Ir) are consistent with d(0) < (d(2), d(-2)) < (d(1), d(-1)) but not with (d(2), d(-2)) < d(0) < (d(1), d(-1)). The trigonal-prism Co(3+) ion in Ca(3)Co(2)O(6) has the L = 2 configuration (d(0))(1)(d(2), d(-2))(3)(d(1), d(-1))(2) because of the metal-metal interaction between adjacent Co(3+) ions in each Co(2)O(6) chain, which is mediated by their z(2) orbitals, and the spin-orbit coupling of the trigonal-prism Co(3+) ion. The spins in each CoMO(6) chain of Ca(3)CoMO(6) prefer the ferromagnetic arrangement for M = Co and Rh but the antiferromagnetic arrangement for M = Ir. The octahedral M(4+) ion of Ca(3)CoMO(6) has the (1a)(1)(1e)(4) configuration for M = Rh but the (1a)(2)(1e)(3) configuration for M = Ir, which arises from the difference in the spin-orbit coupling of the M(4+) ions and the Co···M metal-metal interactions.  相似文献   

11.
The title radical (F4BImNN) is a stable nitronylnitroxide that forms hydrogen-bonded NH... ON chains in the solid state. The chains assemble the F4BImNN molecules to form stacked contacts between the radical groups, in a geometry that is expected to exhibit ferromagnetic (FM) exchange based on spin polarization (SP) models. The experimental magnetic susceptibility of F4BImNN confirms the expectation, showing 1-D Heisenberg chain FM exchange behavior over 1.8-300 K with an intrachain exchange constant of Jchain/k = +22 K. At lower temperatures, ac magnetic susceptibility and variable field heat capacity measurements show that F4BImNN acts as a quasi-1-D ferromagnet. The dominant ferromagnetic exchange interaction is attributable to overlap between spin orbitals of molecules within the hydrogen-bonded chains, consistent with the SP model expectations. The chains appear to be antiferromagnetically exchange coupled, giving cusps in the ac susceptibility and zero field heat capacity at lower temperatures. The results indicate that the sample orders magnetically at about 0.7 K. The magnetic heat capacity ordering cusp shifts to lower temperatures as external magnetic field increases, consistent with forming a bulk antiferromagnetic phase below a Néel temperature of TN(0) = 0.72 K, with a critical field of Hc approximately 1800 Oe. The interchain exchange is estimated to be zJ/k congruent with (-)0.1 K.  相似文献   

12.
A new iron(III) arsenate templated by ethylenediamine, (C2H10N2) [Fe(HAsO4)2(H2AsO4)](H2O), has been prepared by hydrothermal synthesis. The unit-cell parameters are a = 8.705(3) A, b = 16.106(4) A, c = 4.763(1) A, beta = 90.63(3) degrees; monoclinic, P2(1) with Z = 2. The compound exhibits a chain structure along the c-axis with the ethylenediammonium cations as counterion. The chains show isolated FeO6 octahedra with two HAsO4 and one H2AsO4 tetrahedra per FeO6 octahedron. The ESR spectrum at 5.0 K is isotropic with a g-value of 2.0, which remains practically unchanged at room temperature. Magnetic measurements indicate the presence of antiferromagnetic interactions. A value of -0.835 K for the J-exchange parameter has been calculated by fitting the magnetic data to a model for antiferromagnetic chains of spin S = 5/2.  相似文献   

13.
Partially oxidized one-dimensional (1D) Pt-Pt chain compounds [Pt2(MeCS2)4]4ClO4.5PhCN (1) and [Pt2(EtCS2)4]5(ClO4)2 (2) were synthesized by electrocrystallization of diplatinum(II,II) complexes from different solvents. 1 and 2 consist of 1D Pt-Pt chains of stacked Pt-Pt dimers with short interdimer S...S contacts. Depending on the number of ClO4- per dimer and their positions, 1 forms a regular stack of Pt-Pt dimers, whereas 2 forms pentamer of dimers in the 1D chain. 1 exhibits high electrical conductivity (4.2-8.0 S cm-1) at 300 K and metallic behavior above 125 K. 2 is a semiconductor. 1 exhibits almost temperature independent magnetic susceptibility (ca. 1.1 x 10-4 emu mol-1) which is attributed to Pauli paramagnetism, whereas the spin degree of freedom in 2 has been lost. Although the basic structures are closely related, they exhibited different solid-state properties that depend on the valence state of the platinum atoms and the periodicity within the 1D chain.  相似文献   

14.
Several compositions of manganese-tin-bismuth selenide solid-solution series, Mn(1-x)Sn(x)Bi(2)Se(4) (x = 0, 0.3, 0.75), were synthesized by combining high purity elements in the desired ratio at moderate temperatures. X-ray single crystal studies of a Mn-rich composition (x = 0) and a Mn-poor phase (x = 0.75) at 100 and 300 K revealed that the compounds crystallize isostructurally in the monoclinic space group C2/m (no.12) and adopt the MnSb(2)Se(4) structure type. Direct current (DC) magnetic susceptibility measurements in the temperature range from 2 to 300 K indicated that the dominant magnetic ordering within the Mn(1-x)Sn(x)Bi(2)Se(4) solid-solutions below 50 K switches from antiferromagnetic (AFM) for MnBi(2)Se(4) (x = 0), to ferromagnetic (FM) for Mn(0.7)Sn(0.3)Bi(2)Se(4) (x = 0.3), and finally to paramagnetic (PM) for Mn(0.25)Sn(0.75)Bi(2)Se(4) (x = 0.75). We show that this striking variation in the nature of magnetic ordering within the Mn(1-x)Sn(x)Bi(2)Se(4) solid-solution series can be rationalized by taking into account: (1) changes in the distribution of magnetic centers within the structure arising from the Mn to Sn substitutions, (2) the contributions of spin-polarized free charge carriers resulting from the intermixing of Mn and Sn within the same crystallographic site, and (3) a possible long-range ordering of Mn and Sn atoms within individual {M}(n)Se(4n+2) single chain leading to quasi isolated {MnSe(6)} octahedra spaced by nonmagnetic {SnSe(6)} octahedra.  相似文献   

15.
Whangbo MH  Koo HJ 《Inorganic chemistry》2002,41(13):3570-3577
The magnetic structures of the Cu(2)O(3) spin lattices present in Cu(4)O(3) and Ag(2)Cu(2)O(3) were analyzed by studying their spin exchange interactions on the basis of spin dimer analysis. Calculations of spin exchange parameters were calibrated by studying LiCuVO(4) whose intrachain and interchain antiferromagnetic spin exchange parameters are known experimentally. The magnetic phase transition of Cu(4)O(3) at 42.3 K doubles the unit cell along each crystallographic direction. The spin arrangements of the Cu(2)O(3) lattice consistent with this experimental observation are different from conventional antiferromagnetic ordering. Our analysis indicates that spin fluctuation should occur in Cu(4)O(3), low-dimensional magnetism should be more important than magnetic frustration in Cu(4)O(3), and Ag(2)Cu(2)O(3) and Cu(4)O(3) should have similar structural and magnetic properties.  相似文献   

16.
The synthesis and the X-ray structure of two complexes exhibiting a linear chain of four nickel atoms is reported, following Ni4(mu4-phdpda)4 (1), which had been characterized previously. [Ni4(mu4-Tsdpda)4(H2O)2], where H2Tsdpda is N-(p-toluenesulfonyl)dipyridyldiamine (2), is axially coordinated to two water molecules, at variance with 1. One-electron oxidation of 2 resulted in the loss of the axial ligands, yielding [Ni4(mu4-Tsdpda)4]+, [3]+, which was also structurally characterized. Finally, we report the structure of Ni4(mu4-DAniDANy)4 (4), a complex synthesized starting from the new ligand N,N'-bis-p-anisyl-2,7-diamino-1,8-naphthyridine. Magnetic measurements concluded that 4 is diamagnetic, like 1, whereas 2 is antiferromagnetic (-2J(14) = 80 cm(-)(1), using the Heisenberg Hamiltonian H = -2J(14) S(1).S(4)), as are other axially coordinated chains with an odd number of nickel atoms. DFT calculations are reported on these complexes in order to rationalize their electronic structure and their magnetic behavior. The magnetic properties of the [Ni4]8+ complexes are governed by the electronic state of the Ni(II) atoms, which may be either low-spin (S = 0), or high-spin (S = 1). DFT calculations show that the promotion to high spin of two Ni atoms in the chain, either external or internal, depends on the interplay between axial and equatorial coordination. The synergy between axial coordination and the presence of electron-withdrawing toluenesulfonyl substituents in 2 favors the promotion to the high-spin state of the terminal Ni atoms, thus yielding an antiferromagnetic ground state for the complex. This is at variance with complexes 1 and 4, for which the lowest quintet state results from the promotion to high spin of the internal nickel atoms, together with an important ligand participation, and is destabilized by 9 to 16 kcal mol(-1) with respect to the diamagnetic ground state.  相似文献   

17.
The compound [Mn2(CO)10] reacts with 2-(Methylthio)thiophene (C5H6S2) while refluxing in xylene to afford a methylthio-tetramanganese product [MnS(CO)3]4, in which C5H6S2 is cleaved with loss of thiophene. The crystal structure of [MnS(CO)3]4 has been studied by direct method. Based on the 21 685 unique reflections collected using Mo of X-ray radiation and a CCD-based detector, it is refined to an agreement index (R1) of 0.079 0. The cell is triclinic with dimensions: a=1.719 49 nm, b=1.959 2 nm, c=2.632 6 nm and α=79.733°, β=71.407°, γ=89.387°. There are 12 unit cells of [MnS(CO)3]4 in the cell, with space group P1.  相似文献   

18.
We report a detailed physical analysis on a family of isolated, antiferro-magnetically (AF) coupled, chromium(III) finite chains, of general formula (Cr(RCO(2))(2)F)(n) where the chain length n = 6 or 7. Additionally, the chains are capped with a selection of possible terminating ligands, including hfac (= l,l,l,5,5,5-hexafluoropentane-2,4-dionate(l-)), acac (= pentane-2,4-dionate(l-)) or (F)(3). Measurements by inelastic neutron scattering (INS), magnetometery and electron paramagnetic resonance (EPR) spectroscopy have been used to study how the electronic properties are affected by n and capping ligand type. These comparisons allowed the subtle electronic effects the choice of capping ligand makes for odd member spin 3/2 ground state and even membered spin 0 ground state chains to be investigated. For this investigation full characterisation of physical properties have been performed with spin Hamiltonian parameterisation, including the determination of Heisenberg exchange coupling constants and single ion axial and rhombic anisotropy. We reveal how the quantum spin energy levels of odd or even membered chains can be modified by the type of capping ligand terminating the chain. Choice of capping ligands enables Cr-Cr exchange coupling to be adjusted by 0, 4 or 24%, relative to Cr-Cr exchange coupling within the body of the chain, by the substitution of hfac, acac or (F)(3) capping ligands to the ends of the chain, respectively. The manipulation of quantum spin levels via ligands which play no role in super-exchange, is of general interest to the practise of spin Hamilton modelling, where such second order effects are generally not considered of relevance to magnetic properties.  相似文献   

19.
Sandwich-type supramolecular cation structures of (M(+))([12]crown-4)(2) complexes (M(+) = Li(+), Na(+), K(+), and Rb(+)) were introduced as countercations to the [Ni(dmit)(2)](-) anion, which bears an S = (1)/(2) spin, to form novel magnetic crystals (dmit(2-) = 2-thione-1,3-dithiole-4,5-dithiolate). The zigzag arrangement of Li(+)([12]crown-4)(2) cations in Li(+)([12]crown-4)(2)[Ni(dmit)(2)](-) salt induced weak intermolecular interactions of [Ni(dmit)(2)](-) dimers, whose magnetic spins were isolated from each other. The molecular arrangements of cations and anions in M(+)([12]crown-4)(2)[Ni(dmit)(2)](-) salts (M(+) = Na(+), K(+), and Rb(+)) were isostructural to each other. In the case of Na(+)([12]crown-4)(2)[Ni(dmit)(2)](-), the space group C2/m changed to C2/c with a lowering in temperature from 298 to 100 K. This structural change occurred at 222.5 K as a first-order phase transition. The space group C2/m (T = 298 K) in the salt K(+)([12]crown-4)(2)[Ni(dmit)(2)](-) also changed to C2/c (T = 100 K), which transition occurred at 270 K. Crystal structural analyses at 298 and 100 K revealed changes in both supramolecular cation conformation and [Ni(dmit)(2)](-) anion arrangements. The transition from C2/m to C2/c crystals generated a dipole moment in the Na(+)([12]crown-4)(2) and K(+)([12]crown-4)(2) structures, which were reconstructed to cancel the net dipole moment of the C2/c crystals. These cation transformations led to changes in intermolecular interactions between the [Ni(dmit)(2)](-) anions via structural rearrangements. The crystal structure of C2/c was stabilized in Rb(+)([12]crown-4)(2)[Ni(dmit)(2)](-) at 298 K. The [Ni(dmit)(2)](-) configuration in these salts with the C2/c space group was a one-dimensional uniform chain, which showed the temperature-dependent magnetic susceptibility of a one-dimensional linear Heisenberg antiferromagnetic chain.  相似文献   

20.
Koo HJ  Whangbo MH 《Inorganic chemistry》2000,39(16):3599-3604
The spin exchange interactions in the ambient-pressure orthorhombic (APO), high-pressure orthorhombic (HPO), and ambient-pressure monoclinic (APM) phases of the vanadium pyrophosphate, (VO)2P2O7, were analyzed by calculating the spin-orbital interaction energies delta e-delta e0 of their spin dimers. The anisotropy of the spin exchange interactions in the HPO phase is well explained by the delta e-delta e0 values. For the APO phase, the reported crystal structure does not provide accurate enough delta e-delta e0 values to conclude unambiguously which of the V1-V2 and V3-V4 chains has a larger spin gap and which of the bridged and edge-sharing spin dimers has a stronger spin exchange interaction in the V1-V2 and V3-V4 chains. The APM phase is predicted to exhibit essentially two spin gaps, with a large spin gap for the V8-V5-V7-V6 chain and a very small one for the V4-V2-V3-V1 chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号