首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was made on the hydroxylation of six macrocyclic bicopper complexes with bridge of SCN?, Cl?, Br?, I?, N3? or OH? respectively in aqueous solution. Electronic spectra and data of titration by ion selective electrode show that the basic structure of the complexes remained unchanged during hydroxylation and hydroxyl group bound to copper atom only at the axial direction of the complexes. pH titration was made by auto-titration and data acquisition system controlled by microcomputer. Data of pH titration was pq-analysed by program LEMIT which show that 1-4 hydroxyl groups bind to copper atom stepwisely. Twenty four stepwise hydroxylation constants of the complexes were calculated and concentration distribution of various species during pH changing and hydroxylation were obtained. The six complexes except that with bridge N3? formed dihydroxo-complexes mainly at about pH 9 and formed monohydroxo-complexes mainly at about pH 7.5.  相似文献   

2.
The adsorption of lead(II) and copper(II) on an activated carbon (Filtrasorb 300, Chemviron) was characterized assuming that it takes place by formation of complexes with functional groups, present in the activated carbon. Their concentration and conditional adsorption coefficients were determined for each metal by titration of the carbon in suspension in aqueous phase, at constant acidity, with the metal itself. For each titration point, the concentration of the metal in the solution phase after equilibration was determined, and the data were processed by the Ruzic linearization method, to obtain the concentration of the active sites involved in the sorption, and the conditional constant. The effect of the pH was also examined, in the range 4-6, obtaining that the adsorption increases at increasing pH. The protonation and adsorption constants were determined from the conditional adsorption coefficients obtained at the different acidities. The concentration of the active sites is 0.023 and 0.042 mmol g−1, and the protonation constants are 1.0×106 and 4.6×104 M−1 for Pb(II) and Cu(II). The corresponding adsorption constants are respectively 1.4×105 and 6.3×103 M−1. All the parameters are affected by a large uncertainty, probably due to the heterogeneity of the active groups in the activated carbon. Even if so, these parameters make it possible a good prediction of the adsorption in a wide range of conditions. Other sorption mechanism can be set up at different conditions, in particular at different pH, as it has been demonstrated in the case of copper(II).  相似文献   

3.
Isothermal titration calorimetry (ITC) and potentiometric titration methods have been used to study the process of proton transfer in the copper(II) ion-glycylglycine reaction. The stoichiometry, conditional stability constants, and thermodynamic parameters (ΔG, ΔH, and ΔS) for the complexation reaction were determined using the ITC method. The measurements were carried out at 298.15 K in solutions with a pH of 6 and the ionic strength maintained with 100 mM NaClO4. Carrying out the measurements in buffer solutions of equal pH but different enthalpies of ionization of its components (Mes, Pipes, Cacodylate) enabled determination of the enthalpy of complex formation, independent of the enthalpy of buffer ionization. The number of protons released by glycylglycine on account of complexation of the copper(II) ions was determined from calorimetric and potentiometric measurements.  相似文献   

4.
Summary A computer program for two mass balance systems (in solution) has been written in FORTRAN IV. This program (ES3TM) refines the formation constants and some titration parameters (E0, analytical concentrations) from potentiometric data, using the Marquardt algorithm for the Gauss nonlinear least squares method. The program has been compared with some other programs reported in the literature. In order to test the ES3TM program and to obtain reliable values of formation constants for the species, [Cup(OH)q](2p–q)+, we studied the hydrolysis of copper(II) by pH-metric measurements at 37°C and I=0.15 mol dm–3 (NaNO3). The results of the refinement have been discussed in the light of the characteristics of the ES3TM program and of the reliability of the speciation models on copper(II) hydrolysis reported up to now.See Appendix.  相似文献   

5.
Two bis(N,N-dialkylamide) derivatives of DTPA [(carboxymethyl)iminobis (ethylenenitrilo) tetraacetic acid], DTPA-BDMA = the bis(N,N-dimethylamide) and DTPA-BDEA = the bis(N,N-diethylamide) were synthesized. Their protonation constants were determined by potentiometric titration in 0.10 M Me4NNO3 and by NMR pH titration at 25.0 ± 0.1 °C. Stability and selectivity constants were measured to evaluate the possibility of using the corresponding gadolinium(III) complexes for magnetic resonance imaging contrast agents. The stability constants of gadolinium(III), copper(II), zinc(II), and calcium(II) complexes with DTPA-BDMA and DTPA-BDEA were investigated quantitatively by potentiometry. The stability constant for gadolinium(III) complexes is larger than those for Ca(II), Zn(II), and Cu(II) complexes. The selectivity constants and modified selectivity constants of the amides for Gd3+ over endogenously available metal ions were calculated. Effectiveness of these two ligands in binding divalent and trivalent metal ions in biological media is assessed by comparing pM values at physiological pH 7.4. Spin-lattice relaxivity values R1 for Gd(III) complexes were also determined. The observed relaxivity values were found to decrease with increasing pH in the acid range below pH 4 and relaxivity values became invariant with respect to pH changes over the range of 4–10. 17O NMR shifts showed that the [Dy(DTPA-BDMA)] and [Dy(DTPA-BDEA)] complexes had one inner-sphere water molecule. Water proton spin-lattice relaxation rates for the [Gd(DTPA-BDMA)] and [Gd(DTPA-BDEA)] complexes were also consistent with one inner-sphere gadolinium(III) coordination position.  相似文献   

6.
Study of the sulphosalicylate complexes of copper(II), nickel(II), cobalt(II) and uranyl(II) by means of cation-exchange resins.The conditional stability constants of the 1:1 complexes of the sulphosalicylate ions (L3-) with copper(II), nickel(II), cobalt(II) and uranyl ions have been determined in a sodium perchlorate solution (0.1 M) and at various pH values by a cation-exchange method based on Schubert's procedure. The limits of application of the method are discussed. The variation with pH of the conditional stability constants can be explained by the existence of the complexes: CuH2L, CuHL, CuL-; NiH2L+, NiHL, NiL-; CoHL, CoL-; UO2H2L+, UO2HL, UO2L-, UO2LOH2-. The stability constants of these complexes are reported. Distribution diagrams of the various complexes of each element with pH and total concentration of sulphosalicylate parameters are given.  相似文献   

7.
Stability constants of copper(II) mono- and bis-complexes with L-tyrosine were determined by the potentiometric titration method. Gibbs energies of the transfer (Δtr G 0) of a ligand and a complex ion from water into water-ethanol solvents were calculated. Stability of the complexes [CuHTyr]+ and [Cu(HTyr)2] increases as the ethanol concentration in solutions increases. Increasing stability of the complexes is promoted by weakening solvation of ligand donor groups entering into coordination.  相似文献   

8.
A new β‐cyclodextrin dimer, 2,6‐dimethylpyridine‐bridged‐bis(6‐monoammonio‐β‐cyclodextrin) (pyridyl BisCD, L), is synthesized. Its zinc complex (ZnL) is prepared, characterized, and applied as a catalyst for diester hydrolysis. The formation constant (log KML=7.31±0.04) of the complex and deprotonation constant (pKa1=8.14±0.03, pKa2=9.24±0.01) of the coordinated water molecule were determined by a potentiometric pH titration at (25±0.1)°C, indicating a tridentate N,N′,N′′‐zinc coordination. Hydrolysis kinetics of carboxylic acid esters were determined with bis(4‐nitrophenyl)carbonate (BNPC) and 4‐nitrophenyl acetate (NA) as the substrates. The resulting hydrolysis rate constants show that ZnL has a very high rate of catalysis for BNPC hydrolysis, yielding an 8.98×103‐fold rate enhancement over uncatalyzed hydrolysis at pH 7.00, compared to only a 71.76‐fold rate enhancement for NA hydrolysis. Hydrolysis kinetics of phosphate esters catalyzed by ZnL are also investigated using bis(4‐nitrophenyl)phosphate (BNPP) and disodium 4‐nitrophenyl phosphate (NPP) as the substrates. The initial first‐order rate constant of catalytic hydrolysis for BNPP was 1.29×10?7 s?1 at pH 8.5, 35 °C and 0.1 mM catalyst concentration, about 1600‐fold acceleration over uncatalyzed hydrolysis. The pH dependence of the BNPP cleavage in aqueous buffer was shown as a sigmoidal curve with an inflection point around pH 8.25, which is nearly identical to the pKa value of the catalyst from the potentiometric titration. The kBNPP of BNPP hydrolysis promoted by ZnL is found to be 1.68×10?3 M ?1 s?1, higher than that of NPP, and comparatively higher than those promoted by its other tridentate N,N′,N′′‐zinc analogues.  相似文献   

9.
Summary The formation and the stability in aqueous solution of copper(II) mixed complexes witho-phenylenediamine and mono-, bi-, or tridentate carboxylic ligands were studied at 25° and I = 0.1 mol dm–3 [NaClO4].The effect of the chelating rings, the donor atoms involved, and the type of coordination on the stability constants for the formation of these ternary complexes was evaluated.Attention has been paid an the numerical and statistical analysis of the titration data, which were obtained over a wide concentration range using different experimental equipment and standards in order to avoid systematic errors.  相似文献   

10.
Two N‐2‐hydroxy‐1‐phenylethyl and N‐2‐hydroxy‐2‐phenylethyl derivatives of DTPA (3,6,9‐tri(carboxymethyl)‐3,6,9‐triazaundecanedioic acid), DTPA‐H1P = 3,9‐di(carboxymethyl)‐6‐2‐hydroxy‐1‐phenylethyl‐3,6,9‐triazaundecanedioic acid, and DTPA‐H2P = 3,9‐di(carboxymethyl)‐6‐2‐hydroxy‐2‐phenylethyl‐3,6,9‐triazaundecanedioic acid were synthesized. Their protonation constants were determined by Potentiometric titration in 0.10 M Me4NNO3 and by NMR pH titration at 25.0 ± 0.1°C. The formations of lanthanide(III), copper(II), zinc(II) and calcium(II) complexes were investigated quantitatively by potentiometry. The stability constant for Gd(III) complex is larger than those for Ca(II), Zn(II) and Cu(II) complexes with these two ligands. The selectivity constants and modified selectivity constants of the DTPA‐H1P and DTPA‐H2P for Gd(III) over endogenously available metal ions were calculated. Comparing pM values at physiological pH 7.4 assesses effectiveness of these two ligands in binding divalent and trivalent metal ions in biological media. The observed water proton relaxivity values of [Gd(DTPA‐H1P)]? and [Gd(DTPA‐H2P)]? became constant with respect to pH changes over the range of 4‐10. 17O NMR shifts showed that the [Dy(DTPA‐H1P)]? and [Dy(DTPA‐H2P)]? complexes at pH 6.30 had 1.91 and 2.28 inner‐sphere water molecules, respectively. Water proton spin‐lattice relaxation rates of [Gd(DTPA‐H1P)]? and [Gd(DTPA‐H2P)]? complexes were also consistent with the inner‐sphere Gd(III) coordination.  相似文献   

11.
Complexation in the Fe2+–Fe3+N-(carboxymethyl)aspartic acid (H3L) system in aqueous solutions was studied by pH- and redox-potentiometric titration at 25°C and at an ionic strength of 0.1 (KCl). Depending on the H3L concentration and pH, neutral, protonated, and hydroxo complexes of iron(III) can be formed in the solutions. The stability constants for all the detected complexes were calculated, and the distribution plots for the fractions of complexes vs. the solution pH were constructed.  相似文献   

12.
Thermal lens spectrometry was used to study the dissociation kinetics of diethyldithiocarbamate complexes of copper(II), cobalt(III), and nickel(II) as a function of pH in the presence of chloride and sulfate ions. It is shown that, as distinct from conventional spectrophotometric and potentiometric measurements, the reversible dissociation of the test complexes and the irreversible oxidation of the ligand can be studied separately (at a level of n × 10–8n × 10–6 M) using thermal lens spectrometry. Because of work in more dilute solutions and due account of the kinetic features of the systems in question, thermal lens spectrometry provides a higher accuracy of the determination of stability constants for diethyldithiocarbamate complexes of copper(II), cobalt(III), and nickel(II). The adsorption of the diethyldithiocarbamate complexes in question from water–ethanol solutions (1 : 3) on Silasorb C18 silica is studied, and the adsorption constants are determined. The limits of detection of copper(II), cobalt(III), and nickel(II) diethyldithiocarbamates obtained in extraction–thermal-lens determination are n × 10–8 M.  相似文献   

13.
Summary The hydrolysis of the palladium(II) ion in a sodium chloride medium was studied by the e.m.f. method at 25 °C. The data show that the extent of the palladium hydrolysis depends upon the concentration of both palladium and sodium chloride medium. Thus, at a definite pH, the extent of the hydrolysis increases with increasing concentration of palladium, but decreases with increasing concentration of sodium chloride. The stability constants of the complexes obtained, PdOH+ and Pd4(OH) 4 4+ , also differ slightly depending upon the concentraton of sodium chloride. The observed medium effect is in agreement with the linear free energy relationship proposed for the metal ion hydrolysis.  相似文献   

14.
The distribution of copper(II) in species of different stability in some estuarine and sea water samples (Adriatic Sea) was investigated by a method based on the sorption of the metal ion on a strongly sorbing resin, Chelex 100, whose sorbing properties have been previously characterized. From them, it is possible to predict very high values of detection windows at the considered conditions, for example side reaction coefficient as high as 1010 at pH 7.5.Strong copper(II) species in equilibrium with Chelex 100 were detected, at concentration 2-20 nM, with a reaction coefficient approximately 1010.6 at pH 7.45 in sea water, strictly depending on the acidity. They represent 50-70% of the total metal ion and are the strongest copper(II) complexes found in sea water. Weak complexes too were detected in all the samples, with reaction coefficient lower than ca. 109 at the same pH.The method applied, named resin titration (RT), was described in a previous investigation, and is here modified in order to be carried out on oceanographic boat during a cruise in the Adriatic Sea.  相似文献   

15.
The 17O and 14N paramagnetic transverse relaxation time and chemical shift of proline as well as of water, in aqueous solutions of Co(II), Cu(II) and Mn(II) were measured as a function of pH, temperature, and metal ion concentration. The relaxation results were fitted to a theoretical equation linking the Swift-Connick equation to the stability constants of the major complexes in equilibrium. Stability constants for the major complexes of the three ions in this work were determined, along with thermodynamic parameters for some of the complexes. Two complexes of Co(II) were detected directly by 17O NMR at basic pH, and were assigned to CoPrO2 and CoPro3. The hyperfine coupling constant for these two complexes, A/h, was determined directly from the isotropic shift and was found to be −0.63 and −0.31 MHz, respectively. CoPrO2 could be detected in the pH range 6–12, for Co(II) concentrations greater than 0.04 M, and its chemical shift was around 700 ppm downfield from free proline, at 300 K. CoPro3 was detected only at pH 11, in the temperature range 275–284 K, with a chemical shift of 390 ppm downfield from free proline.  相似文献   

16.
Carina M.M. Machado 《Talanta》2007,71(3):1352-1363
This work describes the application of polarography, a technique scarcely used for modelling and optimisation of stability constants, in the study of copper complexes with [(2-hydroxy-1,1-bis(hydroxymethyl)ethyl)amino]-1-propanesulfonic acid (TAPS). Direct current polarography (DCP), using low total copper ion and large total ligand to total copper concentration, enabled the full characterization of Cu-(TAPS)x-(OH)y system, whose complexation occurs in the pH range of copper hydrolysis and Cu(OH)2 precipitation. Cu-(TAPS)x-(OH)y system was studied by DCP and glass electrode potentiometry (GEP) in aqueous solution at fixed total ligand to total metal concentrations ratios and varied pH values (25.0 °C; I = 0.1 M, KNO3). The predicted model, as well as the overall stability constants values, are (as log β): CuL+ = 4.2, CuL2 = 7.8, CuL2(OH) = 13.9 and CuL2(OH)22− = 18.94. GEP only allowed confirming the stability constants for CuL+ and CuL2 and was used to determine the pKa of TAPS, 8.342.Finally, a briefly comparative analysis between TAPS and other structural related buffers was done. Evaluation based on log βCuL versus pKa revealed that TES, TRIS, TAPS and AMPSO coordinated via amino and hydroxymethylgroups forming a five-membered chelate ring. For BIS-TRIS and TAPSO, and possibly DIPSO, one or more five-membered chelate rings involving additional hydroxyl groups are also likely formed.  相似文献   

17.
Interactions in the WO 2 2− -H+-H2O system was studied by pH-potentiometric titration at 25 ± 0.1°C for c w 0 = 8 × 10−3 to 2 × 10−2 mol/l. An accurate mathematical model for polycondensation of tungsten(VI) anions in aqueous solution was proposed. The concentration constants of formation were calculated and the diagrams of distribution of isopolyanions of tungsten(VI) were plotted for pH from 1 to 8 with nitrate ions as a supporting electrolyte at different ionic strengths of the solution (I = 0.10 to 0.50). The dependences of the concentration equilibrium constants in solutions on the ionic strength were approximated by Pitzer’s method. The thermodynamic constants of formation and standard Gibbs energies of formation of isopolytungstates from WO 4 2− were calculated. The most probable scheme of interconversions of isopolyanions in solution at different pH values was proposed.__________Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 8, 2005, pp. 583–589.Original Russian Text Copyright © 2005 by Rozantsev, Sazonova.  相似文献   

18.
《Electrophoresis》2018,39(8):1079-1085
Cyclodextrins (CD) form inclusion complexes with different “guests” owing to the fact that the shape of the CD molecule is a truncated cone with a hydrophobic cavity. The adducts of CD with metal complexes remain scantily explored. In this study, the stability constants of the adducts between succinate copper(II) complexes and β‐CD was determined using capillary electrophoresis. The β‐CD concentration in background electrolytes (BGE) was found to influence on the effective electrophoretic mobility of the copper(II) complexes in succinate BGEs. It was shown that succinic acid and its anions and copper(II) ions did not form a significant amount of the inclusion complexes with β‐CD and the mobility change was caused by the adduct formation between succinate copper(II) complexes and β‐CD. The stability constants of these adducts were determined at 25°С and ionic strength of 0.100 M: log β(CuL22−/β‐CD) = 1.76 ± 0.06, log β(CuL0/β‐CD) = 0.98 ± 0.09. The [CuHL]+ and [CuHL2] species were found to do not form adducts with β‐CD.  相似文献   

19.
Summary Acidity (dehydronation) constants of N,N-dimethylthreonine (DMT) and stability constants of its complexes with Cu+2, Ni+2, and Co+2 were determined in aqueous solution by means of potentiometric titration. UV/Vis spectra were also taken during the titration. It is suggested thatDMT acts as a bidentate ligand toward copper(II) by engaging either (a) amino and carboxyl groups (in [Cu(DMT)] and [Cu(DMT)2]), or, (b) upon dehydronation, amino and hydroxyl groups (in [Cu(DMT)H–1], [Cu(DMT)2H–1], and [Cu(DMT)2H–2]). It is suggested that the coordination in threoninato andallo-threoninato complexes is similar to that described under (a).Based upon Master of Science thesis submitted to the University of Zagreb, Croatia byB. Blagovi  相似文献   

20.
The solubility product of the solid hydroxides and the first hydrolysis constants of trivalent ions of lanthanum, praseodymium and lutetium, were determined in 2 M NaClO4(aq) and 2 M NaCl(aq) at 303 K, where M denotes the concentration in mol-L−1. Solubility diagrams (pLn(aq)−pCH) were measured by means of a radiochemical method. The pCH borderlines of precipitation and the solubility products were determined from these diagrams. The fitting of the solubility equation with the experimental values from the pLn(aq)−pCH diagrams also allowed the calculation of the first hydrolysis constants and the solubility products. In separate experiments, the stability constants for the first monohydroxide species were determined by means of potentiometric pH titrations, where the data were treated with both the program SUPERQUAD and by fitting of the results to the mean ligand number equation. Values of the log10 < eqid20 > 1,Cl constants for the LnCl2+ species were also calculated at 2 M ionic strength and 303 K, using the hydrolysis constants obtained in both perchlorate and chloride media. The quantitative effects of chloride ions on the hydrolysis reactions and solubilities were determined for these three rare-earths spanning the lanthanide series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号