首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A heterodyne receiver using an SIS waveguide mixer with two mechanical tuners has been characterized from 480 GHz to 650 GHz. The mixer uses either a single 0.5 × 0.5 µm2 Nb/AlOx/Nb SIS tunnel junction or a series array of two 1 µm2 Nb tunnel junctions. These junctions have a high current density, in the range 8 – 13 kA/cm2. Superconductive RF circuits are employed to tune the junction capacitance. DSB receiver noise temperatures as low as 200 ± 17 K at 540 GHz, 271 K ± 22 K at 572 GHz and 362 ± 33 K at 626 GHz have been obtained with the single SIS junctions. The series arrays gave DSB receiver noise temperatures as low as 328 ± 26 K at 490 GHz and 336 ± 25 K at 545 GHz. A comparison of the performances of series arrays and single junctions is presented. In addition, negative differential resistance has been observed in the DC I–V curve near 490, 545 and 570 GHz. Correlations between the frequencies for minimum noise temperature, negative differential resistance, and tuning circuit resonances are found. A detailed model to calculate the properties of the tuning circuits is discussed, and the junction capacitance as well as the London penetration depth of niobium are determined by fitting the model to the measured circuit resonances.  相似文献   

2.
Two open structure heterodyne receivers have been designed and tested at 180 and 305 GHz. The RF signal is coupled via a seven teeth log-periodic planar antenna to the mixer. The beam efficiency of the antenna is 65 %. The coupling efficiency to the fundamental gaussian mode is higher than 90%. The mixer incorporates a series array of two SIS Nb-Al/AlOx-Nb junctions. Photolithographical techniques have been employed to fabricate the antennas and the junctions. Double side band noise receiver temperatures of 95 K at 190 GHz and 160 K at 305 GHz have been measured.  相似文献   

3.
We have developed and tested a submillimeter waveguide SIS mixer with NbN-MgO-NbN quasiparticle tunnel junctions. The two junction array is integrated in a full NbN printed circuit. The NbN film critical temperature is 15 K and the junction gap voltage is 5 mV. The size of the junctions is 1.4 × 1.4 µm and Josephson critical current density is about 1.5 KA/cm2 resulting in junction RNC product about 40. The inductive tuning circuit in NbN is integrated with each junction in two junction array. A single non contacting backshort was tuned at each frequency in the mixer block.At 306 GHz the minimum DSB receiver noise temperature is as low as 230 K. The sources of the receiver noise and of the limits of the NbN SIS submillimeter mixer improvement are discussed.  相似文献   

4.
A superconducting low-noise receiver has been developed for atmospheric observations in the 650-GHz band. A waveguide-type tunerless mixer mount was designed based on one for the 200-GHz band. Two niobium SIS (superconductor-insulator-superconductor) junctions were connected by a tuning inductance to cancel the junction capacitance. We designed the RnCj product to be 8 and the current density to be 5.5 kA/cm2. The measured receiver noise temperature in DSB was 126-259 K in the frequency range of 618-660 GHz at an IF of 5.2 GHz, and that in the IF band (5-7 GHz) was 126-167 K at 621 GHz. Direct detection measurements using a Fourier transform spectrometer (FTS) showed the frequency response of the SIS mixer to be in the range of about 500-700 GHz. The fractional bandwidth was about 14%. The SIS receiver will be installed in a balloon-borne limb-emission sounder that will be launched from Sanriku Balloon Center in Japan.  相似文献   

5.
A 40 GHz band SIS mixer receiver has been built using Nb/Al–AlOx/Nb array junctions and a 4.3 K closed cycle helium refrigerator. The minimum conversion loss of the mixer is 2±1 dB and the single sideband receiver noise temperature (TRX (SSB)) is as low as 110±10 K at 36 GHz. TRX (SSB) is almost constant in the IF bandwidth of 600 MHz. The mixer saturation level is as high as 15 nW, which is comparable to the injected LO power.Nobeyama Radio Observatory (NRO), a branch of the Tokyo Astronomical Observatory, University of Tokyo, is a cosmic radio observing facility open for outside users.  相似文献   

6.
Planar lithographed quasioptical mixers can profit from the use of integrated tuning elements to improve the coupling between the antenna and the SIS mixer junctions. We have used a Fourier transform spectrometer with an Hg-arc lamp source as an RF sweeper to measure the frequency response of such integrated tuning elements. The SIS junction connected to the tuning element served as the direct detector for the spectrometer. This relatively quick, easy experiment can give enough information over a broad range of millimeter and submillimeter wavelengths to test both design concepts and success in fabrication. One type of tuning element, an inductive wire connected in parallel with a series array of 5 SIS junctions across the terminals of a bow-tie antenna, shows a resonant response peak at 100 GHz with a 30% bandwidth. This result is in excellent agreement with theoretical calculations based on a simple L-C circuit. It also agrees very well with the RF frequency dependence of the mixer gain measured using the same structure. The other type of tuning element, an open-circuited stub connected in parallel with a single SIS junction across the terminals of a bow-tie antenna, exhibits multiple resonances at 110, 220, and 336 GHz, with bandwidths of 9–15 GHz. This result is in good agreement with theoretical calculations based on an open-circuited stub with small loss and small dispersion. The position and the bandwidth of the resonance at 110 GHz also agrees with the RF frequency dependence of the mixer gain measured using similar structures.Work supported by the U.S. Air Force Office of Scientific Research under Grant No. AFOSR 85-0230.Contribution of the U.S. Government not subject to copyright.  相似文献   

7.
We have designed and fabricated a fixed tuned low noise 600-700 GHz SIS mixer. Twin junctions connected in parallel was employed in the mixer design. A short microstrip tuning structure was used to minimize the RF signal loss at frequency above the energy gap. A receiver noise temperature below 200 K (without any loss correction) in the frequency range of 630 to 660 GHz was recorded. The lowest noise temperature of the receiver was 181 K (without any loss correction) at 656 GHz.  相似文献   

8.
We report results on two full height waveguide receivers that cover the 200–290 GHz and 380–510 GHz atmospheric windows. The receivers are part of the facility instrumentation at the Caltech Submillimeter Observatory on Mauna Kea in Hawaii. We have measured receiver noise temperatures in the range of 20K–35K DSB in the 200–290 GHz band, and 65–90K DSB in the 390–510 GHz atmospheric band. In both instances low mixer noise temperatures and very high quantum efficiency have been achieved. Conversion gain (3 dB) is possible with the 230 GHz receiver, however lowest noise and most stable operation is achieved with unity conversion gain.A 40% operating bandwidth is achieved by using a RF compensated junction mounted in a two-tuner full height waveguide mixer block. The tuned Nb/AlO x /Nb tunnel junctions incorporate an end-loaded tuning stub with two quarter-wave transformer sections to tune out the large junction capacitance. Both 230 and 492 GHz SIS junctions are 0.49µm2 in size and have current densities of 8 and 10 kA/cm2 respectively.Fourier Transform Spectrometer (FTS) measurements of the 230 and 492 GHz tuned junctions show good agreement with the measured heterodyne waveguide response.  相似文献   

9.
Several SIS quasiparticle mixers have been designed and tested for the frequency range from 80 to 115 GHz. The sliding backshort is the only adjustable RF tuning element. The RF filter reactance is used as a fixed RF matching element. A mixer which uses a single 2×2 m2 Pb-alloy junction in a quarter-height waveguide mount has a coupled conversion gain of GM(DSB)=2.6±0.5 dB with an associated noise temperature of TM(DSB)=16.4±1.8 K at the best DSB operation point. The receiver noise temperature TR(DSB) is 27.5±0.8 K for the mixer test apparatus. This mixer provides a SSB receiver noise temperature below 50 K over the frequency range from 91 to 96 GHz, the minimum being TR(SSB)=44±4 K. Another mixer with an array of five 5×5 m2 junctions in series in a full-height wave-guide mount has much lower noise temperature TM(DSB)=6.6±1.6 K, but less gain GM(DSB)=–5.1±0.5 dB.Contribution of the U.S. Government, not subject to copyright  相似文献   

10.
A quasi-optical mixer containing two Nb/Al/AlOx/Nb superconducting tunnel junctions integrated into a NbTiN/SiO2/Al microstrip line is studied experimentally in the 800–1000 GHz frequency range. The mixer is developed as an optional front end of the heterodyne receiver operating in frequency band 3 or 4 and incorporated into the HIFI module of the Herschel space-borne telescope. The double-dipole antenna of the mixer is made of NbTiN and Al films; the quarter-wavelength reflector, of a Nb film. The mixer is optimized for the IF band of 4–8 GHz. The double-sideband noise temperature T RX measured at 935 GHz is 250 K at a mixer temperature of 2 K and an IF of 1.5 GHz. Within 850–1000 GHz, T RX remains below 350 K. The antenna pattern is symmetrical with a sidelobe level below −16 dB.  相似文献   

11.
A 100-GHz-band Superconductor-Insulator-Superconductor (SIS) receiver has been developed for radio astronomy. The mixer used in this receiver has no mechanical tuning elements, such as a backshort or an E-plane tuner. The SIS junction consists of an array of four Nb/Al-AIOx/Nb junctions in series. The quasi-optic system for this receiver has been designed by frequency-independent matching method. The average DSB receiver noise temperature measured in the frequency range from 85 to 115 GHz is 40 K. The receiver is being successfully operated at the Taeduk Radio Astronomy Observatory in Korea.  相似文献   

12.
    
We report preliminary development work on a 850 GHz SIS heterodyne receiver employing a tuned niobium tunnel junction on a 1 µm Si3N4 supporting membrane. Since the mixer is meant to be operated well above the superconducting gap frequency of niobium (2/h њ 690 GHz) special care has been taken to minimize transmission line loss. We have therefore used junctions with an integrated radial stub RF matching network to tune out the large shunt susceptance of the junction and minimize the niobium film absorption loss. Scale model measurements of the waveguide embedding impedance have been made to aid in the design of the choke structure and RF matching network. Detailed Fourier Transform Spectrometer measurements of tuned junctions on both SiO2 and silicon nitride membranes show response up to 1100 GHz and indicate that the absorption loss in the niobium film is in the order of 4–7 dB at 850 GHz, in fairly good agreement with the theoretical loss calculated from the Mattis-Bardeen theory. The junctions have a center frequency of 800 GHz which presents a 6% downshift from the designed value.  相似文献   

13.
We have successfully constructed and tested a superconductor-insulator-superconductor (SIS) receiver for operation at 265–280 GHz using 1 m2 area Nb–AlO x –Nb tunnel junctions fabricated at Stony Brook. The best performance to date is a double sideband (DSB) receiver noise temperature of 129 K at 278 GHz. We find that suppression of the Josephson pair currents with a magnetic field is essential for good performance and a stable DC bias point. Fields as high as 280 gauss have been used with no degradation of mixing performance. We illustrate the improvement in the intermediate frequency (IF) output stability with progressively increasing magnetic fields.  相似文献   

14.
A heterodyne receiver based on a 1/3 reduced height rectangular waveguide SIS mixer with two mechanical tuners has been built for astronomical observations of molecular transitions in the 230 GHz frequency band. The mixer used an untuned array (RnCj3, Rn70 ) of four Nb/AIOx/Nb tunnel junctions in series as a nonlinear mixing element. A reasonable balance between the input and output coupling efficiencies has been obtained by choosing the junction number N=4. The receiver exhibits DSB (Double Side Band) noise temperature around 50 K over a frequency range of more than 10 GHz centered at 230 GHz. The lowest system noise temperature of 38 K has been recorded at 232.5 GHz. Mainly by adjusting the subwaveguide backshort, the SSB (Single Side Band) operation with image rejection of 15 dB is obtained with the noise temperature as low as 50 K. In addition, the noise contribution from each receiver component has been studied further. The minimum SIS mixer noise temperature is estimated as 15 K, pretty close to the quantum limit v/k11 K at 230 GHz. It is believed that the receiver noise temperatures presented are the lowest yet reported for a 230 GHz receiver using untuned junctions.  相似文献   

15.
We have developed a niobium titanium nitride (NbTiN) based superconductor-insulator-superconductor (SIS) receiver to cover the 350 micron atmospheric window. This frequency band lies entirely above the energy gap of niobium (700 GHz), a commonly used SIS superconductor. The instrument uses an open structure twin-slot SIS mixer that consists of two Nb/AlN/NbTiN tunnel junctions, NbTiN thin-film microstrip tuning elements, and a NbTiN ground plane. The optical configuration is very similar to the 850 GHz waveguide receiver that was installed at the Caltech Submillimeter Observatory (CSO) in 1997. To minimize front-end loss, we employed reflecting optics and a cooled beamsplitter at 4 K. The instrument has an uncorrected receiver noise temperature of 205K DSB at 800 GHz and 410K DSB at 900 GHz. The degradation in receiver sensitivity with frequency is primarily due to an increase in the mixer conversion loss, which is attributed to the mismatch between the SIS junction and the twin-slot antenna impedance. The overall system performance has been confirmed through its use at the telescope to detect a wealth of new spectroscopic lines.  相似文献   

16.
    
An SIS mixer for the 3 mm wavelength band has been developed. It has sufficient RF bandwidth to allow double-sideband operation at an IE of 1.4 GHz. Available gain of around 3 dB has been measured, along with mixer temperatures of 20 to 40K (both double sideband). The junctions were fabricated using a lead-alloy technology (Pb–In–Au/oxide/-Pb–Bi). Coupling and tuning structures were integrated onto a quartz substrate along with the junctions. The measurements were made at physical temperatures around 3.1K, achieved with a closed-cycle refrigerator.The National Radio Astronomy Observatory is operated by Associated Universities, Inc. under contract with the National Science Foundation.  相似文献   

17.
    
We have developed broadband SIS heterodyne receivers for the frequency ranges from 440 to 500 GHz and 630 to 690 GHz. The mixerblocks contain a punched waveguide cavity which forms a fixed backshort. The substrate channel is sawed across the waveguide. The horn antenna is flanged to the mixerblock. The blocks are easy and quickly to manufacture even for the small dimensions needed in the submm wavelength range. We use Nb-Al2O3-Nb junctions with areas of 0.8 µm2 and integrated three step niobium tuning structures. With this design we achieve instantaneous double sideband receiver noise temperatures around 120 K over the frequency range from 660 to 690 GHz and around 80 K from 440 to 500 GHz. The mixer performance agrees well with the design calculations for the tuning structures.  相似文献   

18.
The design and performance of a fixed-tuned W-band SIS mixer with a wide band IF of 4.0-7.5 GHz is presented. Waveguide-to-stripline transition of the SIS mixer is designed using the lumped-gap-source port provided by HFSSTM. Measured receiver noise temperature is less than 25 K in the frequency range of 95-120 GHz, with a minimum value of around 19 K achieved. Mixer noise temperature is determined to be about 8.5 K, which is around twice the quantum limit (i.e., 2hw/k). In spite of the high IF frequencies (f 0 = 6 GHz), the performance of the SIS receiver is comparable or even superior to those of the best mechanically-tunable waveguide SIS receivers at low IF frequencies (f 0 = 1.5 GHz). This result suggests that it is easy to design waveguide-to-stripline transitions without scale-model measurements.  相似文献   

19.
We report recent results on a 565–690 GHz SIS heterodyne receiver employing a 0.36µm2 Nb/AlO x /Nb SIS tunnel junction with high quality circular non-contacting backshort and E-plane tuners in a full height waveguide mount. No resonant tuning structures have been incorporated in the junction design at this time, even though such structures are expected to help the performance of the receiver. The receiver operates to at least the gap frequency of Niobium, 680 GHz. Typical receiver noise temperatures from 565–690 GHz range from 160K to 230K with a best value of 185K DSB at 648 GHz. With the mixer cooled from 4.3K to 2K the measured receiver noise temperatures decreased by approximately 15%, giving roughly 180K DSB from 660 to 680 GHz. The receiver has a full 1 GHz IF passband and has been successfully installed at the Caltech Submillimeter Observatory in Hawaii.  相似文献   

20.
Millimeter-wave characterization of a heterodyne receiver using (2 m2) Nb/Al-Ox/Nb Superconducting-Insulator-Superconducting (SIS) junctions arrays is reported. The fabrication of the Nb/Al-Ox/Nb SIS junction arrays as a heterodyne mixer is described. The leakage current of these junctions is below 2A at 4.2K and unmeasurable at 2.5K. The receiver gave a noise temperature Double Side Band (DSB) between 63K and 187K over the frequency range 80 to 115 GHz at the first conversion peak. The results are comparable to those obtained with SIS receivers using well researched lead junctions. Contrary to the lead junctions, our mixer using all Nb junctions have proven remarkably stable with respect to thermal cycling, characteristics which are required for space applications. To our knowledge, this is the most reliable low noise receiver operating in this frequency range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号