首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raman spectra and electrooptical Kerr coefficients of glasses belonging to one lithium–niobate–silicate glass-forming system xNb2O5 · (66 ? x)SiO2 · 19Li2O · 11K2O · 2B2O3 · 2CdO are studied. It has been found that these glasses demonstrate a record value of electrooptical Kerr coefficient; the glass with x = 35 showed electrooptical Kerr coefficient equal to 266 × 10?16 m/V2. Using Raman spectroscopy combined with the concept of Constant Stoichiometric Groupings, a correlation of electrooptical Kerr coefficients of these glasses with the content of Li2O · Nb2O5 (or 2LiNbO3) groupings has been demonstrated. The hypothesis that electrooptical Kerr sensitivity of glasses is related to the ordered regions with composition and symmetry corresponding to some of known electrooptical crystals has been verified. These regions, which the authors called ‘Crystal Motifs’, are identified with the groupings found in studying Raman spectra of the glasses.  相似文献   

2.
Estimates of Kerr electrooptical sensitivity of several tellurite glasses are presented. The highest value of Kerr coefficient B  190 × 10?16 m V?2 is registered for 0.6TeO2–0.3TlO0.5–0.1ZnO glass. This evidences the prospects of thallium–tellurite glass system for electrooptical applications. A gradual decrease of B from 41 × 10?16 to 26 × 10?16 m V?2 in (1 ? x) TeO2  xNbO2.5 system is revealed for x increasing from 0.1 to 0.15. No crystalline phase was found in that system, thus allowing attributing its Kerr sensitivity to the intrinsic properties of the glass matrix. The Kerr coefficient variation from 66 to 81 × 10?16 m V?2 was observed for 0.85TeO2–0.15WO3 glasses co-doped with small amounts of silver and cerium. The analysis of optical absorption spectra of several silver-containing tellurium–tungsten oxide glasses makes it possible to think that introducing cerium provokes formation of new mid-range orderings.  相似文献   

3.
Measurements of Kerr electrooptical sensitivity of several zinc–thallium–tellurite glasses are presented, and composition dependence of Kerr sensitivity is compared with the dependence of the second harmonic generation efficiency collected for optically poled TeO2–TlO0.5–ZnO glasses. These data being analyzed jointly with Raman measurements data allowed us to conclude that the high electrooptical Kerr coefficient and nonlinearity of Tl2O–ZnO–TeO2 glasses, and their sharp increase with augmenting concentration of thallium oxide TlO0.5 above 15% should be attributed to the presence of Tl+ cations having very high non-linear polarizability most likely related to their electronic lone pairs.  相似文献   

4.
Saswati Ghosh 《Journal of Non》2008,354(34):4081-4088
Several compositions based on BaO-CaO-Al2O3-SiO2 (BCAS) glass system have been studied in this investigation to see their applicability as sealant for solid oxide fuel cell (SOFC). The glasses as well as the corresponding glass-ceramics have been systematically characterized by differential thermal analysis, dilatometry, X-ray diffractometry, electron microscopy and impedance analysis to examine their suitability as sealant. While the glass transition temperature (Tg) determined from DTA are within 600-665 °C, the coefficient of thermal expansion (CTE) can be tailored between 9.5 and 13.0 × 10−6 K−1. These glasses are found to be well adhered with metallic interconnects, such as commercial ferritic steel (Crofer22APU), at an optimum sealing temperature of 850 °C. The shrinkage behavior of the developed glasses in their pellet form has also been investigated. The resistivities of the glass-ceramics, as obtained from impedance analysis, are found to be within 104-106 Ω cm at 800 °C. Under sandwiched condition between two metals, some of the developed compositions are found to maintain this high resistivity even after 100 h of operation. One of the glass compositions has shown a low leak-rate of the order of ∼10−7 Pa m2 s−1.  相似文献   

5.
Z. Pan  A. Ueda  M. Hays  R. Mu  S.H. Morgan 《Journal of Non》2006,352(8):801-806
An erbium doped germanate-oxyfluoride glass 60GeO2 · 20PbO · 10PbF2 · 10CdF2 (GPOF) and a tellurium-germanate-oxyfluoride glass 30TeO2 · 30GeO2 · 20PbO · 10PbF2 · 10CdF2 (TGPOF) were prepared in the bulk form. By appropriate heat treatment of the as-prepared glasses above, transparent glass-ceramics were obtained with the formation of β-PbF2 nanocrystals in the glass matrix confirmed by X-ray diffraction. Optical absorption and photoluminescence measurements were performed on as-prepared glass and glass-ceramics. The luminescence of Er3+ ions in transparent glass-ceramics revealed sub-band splitting generally seen in a crystal host. The intensity of red and near infrared luminescence significantly increased in transparent glass-ceramic compared to that in as-prepared glass. Two luminescence bands at 758 nm from 4F7/2 → 4I13/2 and at 817 nm from 2H11/2 → 4I13/2 transitions were observed from transparent glass-ceramic but cannot be seen from the corresponding as-prepared glass. These results are attributed to the change of ligand field of Er3+ ions and the decrease of effective phonon energy when Er3+ ions were incorporated into the precipitated β-PbF2 nanocrystals.  相似文献   

6.
The optical properties of Cr3+ ions in lithium metasilicate (Li2O · SiO2) transparent glass-ceramics were investigated. The main crystalline phase precipitated was the lithium metasilicate (Li2O · SiO2) crystal. The percent crystallinity and crystalline size were ranging 65-75% and 20-35 nm, respectively. The color changes drastically to deep pink from emerald green upon crystallization. New and strong absorption bands appeared and the absorption intensity increases by about 10 times that in glass. These new absorption bands are found to be derived from Cr3+ ions in octahedral sites in the lithium metasilicate crystal lattice. Cr3+ ions substitute for three Li+ ions and occupy the distorted octahedral site between single [SiO4]n chains of lithium metasilicate crystal. The ligand field parameters can be estimated: 10Dq = 13 088 cm−1, B = 453 cm−1, Dq/B = 2.89 and C = 2036 cm−1. The near-infrared luminescence centered at 1250 nm was not detected in the deep pink glass-ceramics unlike emerald green glass.  相似文献   

7.
New chalcohalide glasses from GeS2–In2S3–CsCl pseudo-ternary system were prepared using the conventional melt-quenching method and its glass-forming region has been determined. The differences ΔT (TP ? Tg) of partial glasses are large enough (>100 K) to permit the preparation of performs of considerable size. With the increased content of CsCl, the visible absorption edge (λvis) of these glasses indicates a distinct blue shift while a clear drop of their glass transition temperatures can be seen. The ultrafast non-linearity of partial glasses was measured using the Kerr shutter technique. The non-linear refractive index, n2, was estimated to be in the magnitude of 10?14 cm2/W. Widely transparent range, good glass-forming ability, higher χ(3) and large electronic ultrafast OKE response make these glasses the potential applications in current photonic fields.  相似文献   

8.
The well known and characterized fast ion conducting (FIC) LiI + Li2S + GeS2 glass-forming system has been further optimized for higher ionic conductivity and improved thermal and chemical stability required for next generation solid electrolyte applications by doping with Ga2S3 and La2S3. These trivalent dopants are expected to eliminate terminal and non-bridging sulfur (NBS) anions thereby increasing the network connectivity while at the same time increasing the Li+ ion conductivity by creating lower basicity [(Ga or La)S4/2] anion sites. Consistent with the finding that the glass-forming range for the Ga2S3 doped compositions is larger than that for the La2S3 compositions, the addition of Ga2S3 is found to eliminate NBS units to create bridging sulfur (BS) units that not only gives an improvement to the thermal stability, but also maintains and in some cases increases the ionic conductivity. The compositions with the highest Ga2S3 content showed the highest Tgs of ∼325 °C. The addition of La2S3 to the base glasses, by comparison, is found to create NBS by forming high coordination octahedral LaS63− sites, but yet still improved the chemical stability of the glass in dry air and retained its high ionic conductivity and thermal stability. Significantly, at comparable concentrations of Li2S and Ga2S3 or La2S3, the La2S3-doped glasses showed the higher conductivities. The addition of the LiI to the glass compositions not only improved the glass-forming ability of the compositions, but also increased the ionic conductivity glasses. LiI concentrations from 0 to 40 mol% improved the conductivities of the Ga2S3 glasses from ∼10−5 to ∼10−3 (Ω cm)−1 and of the La2S3 glasses from ∼10−4 to ∼10−3 (Ω cm)−1 at room temperature. A maximum conductivity of ∼10−3 (Ω cm)−1 at room temperature was observed for all of the glasses and this value is comparable to some of the best Li ion conductors in a sulfide glass system. Yet these new compositions are markedly more thermally and chemically stable than most Li+ ion conducting sulfide glasses. LiI additions decreased the Tgs and Tcs of the glasses, but increased the stability towards crystallization (Tc − Tg).  相似文献   

9.
The Er3+ doped transparent oxyfluoride glass ceramics were obtained by appropriate heat treatment of the precursor glasses with composition (mol%) 50SiO2-xPbF2-(50 − x)PbO-0.5ErF3. The microstructure and optical properties of the glasses and glass ceramics were determined by differential scanning calorimetry (DSC), X-ray diffraction (XRD), absorption spectra and luminescence spectra. The intensity of upconversion luminescence significantly increased in glass ceramics compared to that in precursor glass. The emission bands centered around 660 nm (4F9/2 → 4I15/2) and 410 nm (2H9/2 → 4I15/2) were simultaneously observed in glass ceramics but cannot be seen in the corresponding precursor glass. The influence of different PbF2 content on the microstructure and upconversion luminescence of the samples was analyzed in detail. The results indicated that with the increase of PbF2 content, the Ω2 was almost the same and the ratios of red to green upconversion luminescence decreased in glass ceramics.  相似文献   

10.
The influences of different alkali and alkali-earth oxide substitutions on the properties of lithium-iron-phosphate (LIP) glasses have been studied. Na2O, K2O, MgO, CaO and BaO were used to substitute Li2O to prepare LIP glasses with molar compositions of (20 − x)Li2O − xR2O(RO) − 30Fe2O3 − 50P2O5 (x = 2.4, 4, 5.6 and 7.2). The glass transition temperature (Tg) was determined by the differential thermal analysis technique. The density and chemical durability of the prepared glasses were measured based on the Archimedes principle and the weight losses after the glasses were boiled in water. The results show that Tg decreases with the initial substitutions, whereas the density and chemical durability increase. The diminution of the aggregation effect of Li+ ions on the glass structure due to the decrease in Li+ concentration, the larger molecule weights of the substitutes, the mixed-alkali and depressing effects as well the slower mobility of substitute ions mainly contribute to the initial changes in Tg, density and chemical durability of the LIP glasses, respectively. Further increasing the amounts of substitutes brings about increasing diminution of the aggregation effect of Li+ ions and breakage of the glass network on the one hand and increasing amounts of substitutes with larger molecule weights and ion radii on the other hand. Both aspects influence the glass properties oppositely and consequently non-monotonic variations in the properties of LIP glasses with the substitutions are observed.  相似文献   

11.
Glass-forming regions were investigated for the binary xM2S + (1 − x)GeS2 (M=K, Rb, Cs) systems. Glasses were prepared from 0?x?0.20 mole fraction alkali sulfide using a novel preparation route involving the decomposition of the alkali hydrosulfides in situ. At higher alkali concentrations near x=0.33, the glass-forming regions are limited by the readily formed adamantane-like M4Ge4S10 crystals. Structural characterization of the glasses and polycrystals for x?0.33 were performed using Raman scattering and IR absorption. Terminal Ge-S vibrational modes, observed between 473 and 479 cm−1, increased in intensity and decreased in frequency with increasing alkali modifier content. Glass transition temperatures decreased with increasing alkali modifier, ranging from 250 to 215 °C. Corresponding crystallization onset temperatures were between 340 and 385 °C. DC conductivity values of the glasses ranged from 10−10 to 10−7 (Ω cm)−1 with activation energies between 0.54 and 0.93 eV for the temperature range of ∼100-250 °C. Higher ionic conductivities were observed with increasing alkali concentration and decreasing alkali radii. Additionally, an increase in the activation energy was observed above the glass transition temperature.  相似文献   

12.
Molecular orbital calculations of two phospho-tellurite model clusters were performed to clarify the origins of the Raman bands in the Stokes region of over 1000 cm 1 in phospho-tellurite glasses. The Raman bands could be attributed to two components of 900-1050 cm 1 of symmetrical stretching vibrations of PO4 units and 1050-1200 cm 1 of anti-symmetrical stretching vibrations of PO4 units. It was also clarified that the top of the valence band of phospho-tellurite glasses consists of the lone pair electrons in a TeO4 + 1 unit and the bottom of the conduction band of the glass consists of the antibonding hybrids of Te 5p and O 2p orbitals in the equatorial plane of a TeO4 unit.We have developed new phospho-tellurite glasses which have the Raman gain peak of 30 times as large as silica glass or the Raman gain bandwidth of more than 1200 cm 1.  相似文献   

13.
《Journal of Non》2006,352(52-54):5508-5514
Synthesis and devitrification behavior of Cr-doped CaO–GeO2–Li2O–B2O3(Al2O3) glasses have been studied. A range of glass compositions was found to yield transparent glass-ceramics after devitrification. The size of crystallites is below 1 μm. Glass-ceramic samples exhibit 1050–1600 nm broad-band emission with a maximum around 1260 nm, very similar to the emission of Cr4+:Ca2GeO4 bulk crystals. X-ray diffraction measurements indicate that the structure of crystallites exhibiting near infrared emission in glass-ceramics may be assigned to Cr4+:Ca2GeO4 with increased lattice parameters.  相似文献   

14.
In this work, new glass compositions in the TeO2-GeO2-Nb2O5-K2O system have been prepared and studied. The germanotellurite glasses were prepared by melt-quenching and their density, refractive index and characteristic temperatures have been determined. The structure of these glasses has been studied by infrared and Raman spectroscopies.The progressive replacement of TeO2 by GeO2 led to an increase of the glass transition and crystallisation temperatures of the glasses and a simultaneous decrease of their density and refractive index. Typical density and refractive index values of these glasses ranged from 4.98 to 3.85 g cm− 3 and 2.08 to 1.79, respectively, with increasing GeO2 content. The infrared spectra are dominated by a band ~ 640 cm− 1 in the tellurite glass and ~ 800 cm− 1 in the germanate glass. The Raman spectra of the germanotellurite glasses present an intense boson peak between ~ 34 and 47 cm− 1, together with high frequency peaks at ~ 670 cm− 1 and ~ 470 cm− 1 for high tellurite and high germanate glass compositions, respectively. The vibrational spectra of these germanotellurite glasses indicate that the glass network consists basically of TeO4 and [TeO3]/[TeO3 + 1] units, mixed with GeO4 and NbO6 polyhedra.  相似文献   

15.
Glasses in the BaO-ZnO-B2O3 system were examined as potential replacement for PbO glass frits with low firing temperature (500-600 °C) for the dielectric layer of a plasma display panel (PDP). The glasses were evaluated for glass transition temperature (Tg), thermal expansion coefficient (α) and dielectric constant ε. The electrical and the thermal properties were also compared with theoretical data calculated by a known empirical equation. Tg of the glasses varied between 480 and 560 °C, and α was in the range of 7-9×10−6 K−1. The dielectric constant ranges from 14 to 19 and the theoretical data showed lower α and ε than the experimental data. The results suggest that BaO-ZnO-B2O3 glasses would be suitable as an alternative to Pb-based dielectric layer in PDPs.  相似文献   

16.
The phase separation and crystallization behavior in the system (80 − X)SiO2 · X(Al2O3 + P2O5) · 5B2O3 · 15Na2O (mol%) glasses was investigated. Glasses with X = 20 and 30 phase separated into two phases, one of which is rich in Al2O3-P2O5-SiO2 and forms a continuous phase. Glasses containing a larger amount of Al2O3-P2O5 (X = 40 and 50) readily crystallize and precipitates tridymite type AlPO4 crystals. It is estimated that the phase separation occurs forming continuous Al2O3-P2O5-SiO2 phase at first, and then tridymite type AlPO4 crystals precipitate and grow in this phase. Highly transparent glass-ceramics comparable to glass can be successfully obtained by controlling heat treatment precisely. The crystal size and percent crystallinity of these transparent glass-ceramics are 20-30 nm and about 50%, respectively.  相似文献   

17.
Transparent Ni2+-doped SiO2-Al2O3-Ga2O3-Li2O (LGAS) glass-ceramics embedding lithium aluminate spinel nanocrystals was prepared. After heat treatment, LiAl5O8 crystallite was precipitated in the glasses, and its size was about 3 nm. It was confirmed from the absorption spectra that the ligand environment of Ni2+ ions changed from the trigonal bi-pyramid fivefold sites in the as-made glass to the octahedral sites in the glass-ceramics. Upon excitation at 980 nm, broadband infrared luminescence centered at around 1250 nm with full width at half maximum (FWHM) more than 250 nm was observed originating from the 3T2(3F) → 3A2(3F) transition of Ni2+ in octahedral sites. The broadband near-infrared (NIR) emission from Ni2+-doped glass-ceramics can be as host materials for broadband optical amplifier.  相似文献   

18.
《Journal of Non》2007,353(41-43):3940-3946
Li-disilicate glass-ceramics consist of microcrystallites imbedded in the glassy Li2O · 2SiO2 matrix where the number and size of the crystallites depend on the devitrification heat treatment. To assess ion motion in these model glass-ceramics, we have measured the temperature dependence of the dc conductivity, σdc, and the 7Li nuclear spin relaxation (NSR) rate, 1/T1, in samples with various crystalline fraction, c, ranging from c = 0 (pure glass) to c = 1 (fully devitrified polycrystalline ceramic). The Cole–Cole presentation of the complex impedance shows two separate arcs caused by the remarkable difference of the ionic motion in the glassy and crystalline phase. These two arcs correspond to a bi-exponential decay of the 7Li nuclear spin magnetization where the resulting two NSR rates are induced by the ionic motion in the two phases. Thus the NSR and σdc data provide a comprehensive picture of the ionic motion in the glassy and crystalline phases. In particular, the ionic motion is the fastest in the glass; then at lower values of c we observe a metastable crystalline phase with ionic motion much greater than in the stable (LS2) crystalline phase existing at large c-values.  相似文献   

19.
Reduction in the temperature coefficient of the optical path length, dS/dT of Li2O-Al2O3-SiO2 glass-ceramics with near-zero thermal expansion coefficient was attempted using control of the temperature coefficient of electronic polarizability, ?, and the thermal expansion coefficient, α. The dS/dT value of 2.6 mol% B2O3-doped glass-ceramic was 12.5  × 10−6/°C, which was 0.9 ×  10−6/°C smaller than that of B2O3-free glass-ceramic. On the other hand, reduction in dS/dT through B2O3 doping was not confirmed in precursor glasses. Results showed that reduction in dS/dT of the glass-ceramic through B2O3 doping is caused by the reduction in ?. The reduction in ? from B2O3 doping was probably attributable to numerical reduction in non-bridging oxide ions with larger ? value by the concentration of boron ions in the residual glass phase. In addition, application of hydrostatic pressure during crystallization was effective to inhibit precipitation of β-spodumene solid solution, which thereby decreases dS/dT. The dS/dT value of B2O3-doped glass-ceramic crystallized under 196 MPa was 11.7 ×  10−6/°C. That value was slightly larger than that of silica glass. The α value of this glass-ceramic was smaller than that of silica glass.  相似文献   

20.
Structural studies of the ternary xLi2S + (1 − x)[0.5B2S3 + 0.5GeS2] glasses using IR, Raman, and 11B NMR show that the Li2S is not shared proportionately between the GeS2 and B2S3 sub-networks of the glass. The IR spectra indicate that the B2S3 glass network is under-doped in comparison to the corresponding composition in the xLi2S + (1 − x)B2S3 binary system. Additionally, the Raman spectra show that the GeS2 glass network is over-modified. Surprisingly, however, the 11Boron static NMR gives evidence that ∼80% of the boron atoms are in tetrahedral coordinated. A super macro tetrahedron, B10S18−6 is proposed as one of the structures in these glasses in which can account for the apparent low fraction of Li2S present in the B2S3 sub-network while at the same time enabling the high fraction of tetrahedral borons in the glass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号