首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Summary: A new class of fibre reinforced commodity thermoplastics suited for injection moulding and direct processing applications has been developed using man-made cellulosic fibres (Rayon tire yarn, Tencel, Viscose, Carbacell) and thermoplastic commodity polymers, such as polypropylene (PP), polyethylene (PE), high impact polystyrene (HIPS), poly(lactic acid) (PLA), and a thermoplastic elastomer (TPE) as the matrix polymer. For compounding, a specially adapted double pultrusion technique has been employed which provides composites with homogeneously distributed fibres. Extensive investigations were performed with Rayon reinforced PP in view of applications in the automotive industry. The Rayon-PP composite is characterized by high strength and an excellent impact behaviour as compared with glass fibre reinforced PP, thus permitting applications in the field of engineering thermoplastics such as polycarbonate/acrylonitrile butadiene styrene blends (PC/ABS). With the PP based composites the influence of material parameters (e.g. fibre type and load, coupling agent) were studied and it has been demonstrated how to tailor the desired composite properties as modulus and heat distortion temperature (HDT) by varying the fibre type or adding inorganic fillers. Man-made cellulose fibers are also suitable for the reinforcement of further thermoplastic commodity polymers with appropriate processing temperatures. In case of PE modulus and strength are tripled compared to the neat resin while Charpy impact strength is increased five-fold. For HIPS mainly strength and stiffness are increased, while for TPE the property profile is changed completely. With Rayon reinforced PLA, a fully biogenic and biodegradable composite with excellent mechanical properties including highly improved impact strength is presented.  相似文献   

2.
Natural-fibre-mat-reinforced thermoplastic (NMT) composites based on flax fibre mats and a Polypropylene (PP) matrix were manufactured using (i) a film-stacking method and (ii) a paper making process. The influence of fibre length and fibre content on stiffness and strength is reported and compared with data for glass-mat-reinforced thermoplastic (GMT) composites, including the influence of using maleic-anhydride grafted PP. The data is also compared with existing micromechanical models like Kelly-Tyson and Cox-Krenchel for strength and stiffness, respectively. A good agreement was found between theory and experiment in case of stiffness while in case of strength the experimental values fall well below the theoretical predictions. Results indicated that NMTs are of interest for low-cost engineering applications and can compete with commercial GMTs, especially when a high stiffness per unit weight is desirable. Results also indicated that the key area for future development lies not only in improved adhesion but mainly in improving the fibre strength.  相似文献   

3.
The paper will give a short introducing survey on the present state of polyolefin and copolyolefin cross linking. The combination of high-density polyethylene (PEHD) and polypropylene (PP) with elastomers, particularly with ethylene-propylene terpolymer (EPDM), results in high-impact strength PP (HI-PP) and in thermoplastic elastomers (TPE) considered as high-performance polyolefin composites (HP-POC). By filling of PEHD and PP, HP-POCs with increased stiffness, modulus, and abrasion resistance can be produced. They are cost - advantageous substitutes for construction materials as, for example, ABS. Possibilities and limits are demonstrated by own investigations in this field. Best mechanical properties are obtained by reinforcement with fibres, particularly with glass fibres. Requirement for superior parameters is a chemical coupling between glass-fibre surface or glass-fibre size, respectively, and the PP matrix. A new adhesive agent on the basis of siloxane allows to reach high strength and toughness of the composites. The effect seems to be due to a better mutual penetration of the adhesive agent, the size, and the PP matrix. Outlooks will be given on the further development of HP-POC in the field of reinforcement and reactive combination with other polymers.  相似文献   

4.
Due to its high strength, high modulus, excellent clarity, good biodegradability and biocompatibility, poly(lactic acid) (PLA), a bio-based thermoplastic polyester, has evolved into a competitive commodity material with potential to replace conventional petrochemical-based polymers. However, the wide applications of PLA have been hampered by its native drawbacks, such as low heat distortion temperature (HDT), inherent brittleness and relatively high cost. In recent years, researchers have devoted to breaking above-mentioned bottleneck and attempted to extend the application of PLA. This review will summarize recent work about the modification of PLA, especially focusing on enhancing HDT, toughening and reducing cost.  相似文献   

5.
A series of viscose fibres from the tyre cord type varying in mechanical parameters and titre were compounded with polypropylene to produce fibre reinforced composites. Single fibre strength is analysed in detail and conclusions are drawn with respect to effective strength values in composite applications. Composites were analysed in terms of tensile and impact properties. Correlations between single fibre and composite properties are studied. High fibre elongation leads to favourable composite impact properties via high composite elongations at break. Using water as a plastisizing agent increasing fibre elongation, notched Charpy impact strength can be improved by more than 50%. Using a modified rule of mixtures and a shear lag model for the composite modulus it was shown how a titre reduction improves the composite stiffness by an increased interfacial area. A direct fibre-composite strength correlation was not found.  相似文献   

6.
Polylactic acid (PLA) was used as partial replacement for conventional thermoplastic matrix, new composites comprising cellulose, polypropylene (PP), and PLA being realized. In order to obtain a compatible interface between cellulosic pulp and polymeric matrix, two chemical modifications of cellulose with stearoyl chloride and toluene di‐isocyanate (TDI) were performed, structural changes being evidenced by X‐ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The composite materials were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, dynamic scanning calorimetry, impact, tensile and melt rheological tests, surface tension, and dynamic vapor sorption. Because promising results for impact strength and Young modulus were recorded when replacing 15% of PP with PLA in blends of PP with the same cellulosic pulp load, the aim of our study was to assess the behavior to accelerate weathering of composites comprising PP, cellulosic pulp, and PLA. Although the slight decrease in the mechanical properties was recorded after accelerated weathering, the use of functionalized cellulose successfully prevented the deterioration of surface materials, especially for composite comprising stearoyl chloride treated cellulose pulp. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Polylactide (PLA) being a very brittle biopolymer could be toughened by blending with thermoplastic elastomers such as thermoplastic polyurethane elastomer (TPU) and thermoplastic polyester elastomer (TPE); unfortunately, these blends are immiscible forming round domains in the PLA matrix. Therefore, the purpose of this study was to investigate the effects of using maleic anhydride (MA) compatibilization on the toughness and other properties of PLA blended with TPU and TPE. MA grafting on the PLA backbone (PLA‐g‐MA) was prepared separately by reactive extrusion and added during melt blending of PLA/thermoplastic elastomers. IR spectroscopy revealed that MA graft might interact with the functional groups present in the hard segments of TPU and TPE domains via primary chemical reactions, so that higher level of compatibilization could be obtained. SEM studies indicated that PLA‐g‐MA compatibilization also decreased the size of elastomeric domains leading to higher level of surface area for more interfacial interactions. Toughness tests revealed that Charpy impact toughness and fracture toughness (KIC and GIC) of inherently brittle PLA increased enormously when the blends were compatibilized with PLA‐g‐MA. For instance, GIC fracture toughness of PLA increased as much as 166%. It was also observed that PLA‐g‐MA compatibilization resulted in no detrimental effects on the other mechanical and thermal properties of PLA blends. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The preparation of composites by thermoforming of intermingled fibre slivers is an efficient method to receive high performance and lightweight materials. Cellulosic fibres have benefits like low density and sustainability but the sorption of water due to the high hydrophilicity of the cellulose requires attention. The swelling of the wet fibres changes the fibre-matrix adhesion and as a consequence, the mechanical strength of the composite is influenced negatively. In this study, the thermoplastic polypropylene was combined with lyocell fibres as reinforcement. Moisture sorption isotherms of cellulose/polypropylene composites were recorded as function of relative humidity. Additionally, the specific surface area was analysed by the Brunauer–Emmett–Teller model. It has been found, that the moisture sorption is influenced by the polypropylene (PP) ratio in the composites. At 60% relative humidity the moisture uptake of the lyocell fibres was reduced from 10.8 to 5.8% for lyocell embedded in a composite with 50% polypropylene. Besides the hysteresis between moisture sorption/desorption cycles was found to be proportional to the increased content of PP. The “Parallel Exponential Kinetics” (PEK) model was used to analyse the kinetics of moisture sorption of these composites in more detail. With the help of the PEK model the sorption/desorption kinetics were described by a fast and slow moisture sorption/desorption process. The capacity for rapid moisture sorption is reduced by the formation of PP layers on the lyocell surface. The share of slow moisture sorption increased with increasing PP content in the composite. The results support understanding of the interaction of water with cellulose containing composites.  相似文献   

9.
Different chemical pre-treatments of Spartium junceum L. fibres using alkali (NaOH), nanoclay (MMT) and Citric acid (CA) with the aim of producing biodegradable composite material are discussed. As environmental requirements in processing technologies have been higher in recent years, the Polylactic acid (PLA) is used in this research as a matrix, due to its renewability, biodegradability and biocompatibility. Biocomposites are prepared by reinforcing PLA with randomly oriented, short Spartium junceum L. fibres in order to increase material strength. The effects of different pre-treatments of Spartium junceum L. fibres on the mechanical properties of final biocomposite material are examined. Fibre tenacity is studied using Vibroscop and Vibrodyn devices. Tensile strength of biocomposite material was measured on the universal electromechanical testing machine Instron 5584. The results indicate that biocomposites reinforced with fibres modified with MMT and CA show upgraded mechanical properties of the final composite material in comparison with the composite materials reinforced with referenced (nontreated) fibres. Infrared spectra of tested fibres and biocomposites were determined with Fourier transform infrared spectroscopy using Attenuated total reflection (FT-IR ATR) sampling technique and the influence of fibre modifications on the fibre/polymer interfacial bonding was investigated. The interface of Spartium/PLA composites was observed with scanning electron microscope (SEM) and it was clearly visible that biocomposites reinforced with fibres modified by MMT and CA showed better interaction of fibres and matrix.  相似文献   

10.
《先进技术聚合物》2018,29(3):1123-1137
High mechanical performance and partially biodegradable PE‐composite fibers modified with polylactic acid (PLA) and recycled polyethylene terephthalate (rPET) minor components were prepared using melt extrusion and hot drawing process. Rheological properties, morphology, tensile, and thermal properties were investigated. All blends exhibited shear thinning behavior except for starting PLA and rPET. PLA and rPET dispersed phases appeared as droplets in as‐extruded strand, and PLA droplets were mostly larger than those of rPET. The fibrillation of both PLA and rPET domains was achieved after further hot drawing as the fiber. The morphology and tensile properties of the fibers mainly depended on the types and contents of dispersed phases including draw ratios. The ultimate strength of the polymer fibers at draw ratio of 20 was more than 600 times higher than that of the as‐spun sample of the same composition. Remarkable improvement in secant modulus and ultimate strength was found for PE‐30PLA, but the drawing process of this composition encountered some difficulties and rough surface of the fiber was observed. The stiffness and tensile stress for PE‐10PLA‐10rPET fiber were clearly improved when compared with PE and PE‐10PLA. A decrease in thermal stability of PE/PLA composites was observed with increasing PLA content whereas additional presence of rPET significantly increased the stability of the composites both in nitrogen and in air. PE/PLA/rPET fiber possessing high stiffness with good thermal stability prepared in this work has high potential for being utilized as structural parts for load‐bearing applications.  相似文献   

11.
The influence of the morphology on the mechanical properties of binary styrene–butadiene (SB) triblock copolymer blends of a thermoplastic block copolymer and a thermoplastic elastomer (TPE) with different molecular architectures was studied with bulk samples prepared from toluene. Both block copolymers contained SB random copolymer middle blocks, that is, the block sequence S–SB–S. The two miscible triblock copolymers were combined to create a TPE with increased tensile strength without a change in their elasticity. The changes in the equilibrium morphology of the miscible triblock copolymer blends as a function of the TPE content (lamellae, bicontinuous morphology, hexagonal cylinders, and worms) resulted in a novel morphology–property correlation: (1) the strain at break and Young's modulus of blends with about 20 wt % TPE were larger than those of the pure thermoplastic triblock copolymer; (2) at the transition from bicontinuous structures to hexagonal structures (~35 wt % TPE), a change in the mechanical properties from thermoplastic to elastomeric was observed; and (3) in the full range of wormlike and hexagonal morphology (60–100 wt % TPE), elastomeric properties were observed, the strength greatly increasing and high‐strength elastomers resulting. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 429–438, 2005  相似文献   

12.
《先进技术聚合物》2018,29(8):2336-2343
Morphology structure and interfacial interaction are crucial factors for shape memory thermoplastic vulcanizates. In this study, shape memory thermoplastic vulcanizates based on poly(lactic acid) (PLA) and nitrile butadiene rubber (NBR) were prepared through dynamic vulcanization. The influence of acrylonitrile (ACN) content on the morphology, compatibility, shape memory property, and mechanical property was investigated. A co‐continuous structure was observed. The interfacial compatibilization between PLA and NBR phases occurred, resulting in a significantly improved interface adhesion and interfacial interaction, which was confirmed by Fourier transform infrared spectroscopy. With such a novel structure, the PLA/NBR TPVs owned an excellent shape memory property and further improved with increasing ACN content of NBR, which could be explained that the cross‐linked continuous NBR phase provided a stronger recovery driving force. In the meantime, tensile strength and elongation at break of TPVs increased with increase in ACN content. It is concluded that the preparation of dynamically vulcanized thermoplastic vulcanizate with co‐continuous structure and strong interfacial adhesion is beneficial to obtain outstanding shape memory effect.  相似文献   

13.
Maple fibres were treated with a variety of sequential treatments, namely sodium hydroxide (NaOH), NaOH followed by acetylation, or NaOH followed by silanation. These fibres were incorporated into a polylactic acid (PLA) composite and the biodegradation effects were investigated. After 124 days, all composites had exceeded 90% biodegradation with most close to 100%. The PLA composite with the NaOH-treated fibres had the quickest onset of degradation (4.9 days) and highest peak rate of degradation (1.77% biodegradation/day) of all composites studied. Neat PLA had a similarly high peak rate of degradation at 1.85% biodegradation/day, but had a later onset of 11 days. Gel permeation chromatography (GPC) analysis showed the earlier onset of degradation of the composites was caused by increased hydrolysis during composite fabrication as well as composting. GPC showed the formation of up to three molecular weight bands in the PLA during composting which were hypothesised to be occurring by surface hydrolysis, bulk hydrolysis and hydrolysis at the fibre interface. Analysing the remaining composite revealed the NaOH treatment not only caused an increased rate of degradation in the PLA through increase fibre porosity, but also caused an increased rate of degradation in the fibre from the lack of surface waxes and hemicellulose. Similar, yet slower, behaviours were also seen in the NaOH followed by acetylation and NaOH followed by silane treated composites with all composites degrading more rapidly than the neat PLA and neat maple fibre samples.  相似文献   

14.
Flax-PP based thermally bonded roving (TBR) has a unique structure where the flax fibres remain twist-free and fully aligned along the roving axis. The present study describes an experimental investigation on the low velocity impact (LVI) behaviour of the TBR based woven fabric composites and compares the same with plain woven glass fabric reinforced PP composites (GRPC). Two different fabric architectures namely plain woven (PW) and unidirectional (UD) are fabricated using flax/PP based TBR. These TBR based woven fabrics and the glass fabric/PP sheets are consolidated in a compression moulding machine and the resultant composite-laminates are tested for their LVI behaviour. The impact test results revealed that the glass/PP composites absorb more energy and exhibit a higher peak load than both TBR based PW and UD fabric composites. However, the specific load and energy of all flax/PP composites are higher than the glass/PP composite. The damage tolerance of all composite laminates are evaluated by comparing their flexural strength before and after the impact. It is observed that the proportionate loss in flexural strength due to impact thrust is larger in case of glass/PP composites than all flax-PP composites.  相似文献   

15.
Due to the economic importance of polypropylene (PP) and polyethylene terephthalate (PET), and the large amount of composites made with PP matrix and recycled PET as reinforcing material; an investigation was performed regarding the mechanical and thermal behavior of PP composites containing recycled polyethylene terephthalate fibers (rPET). Interfacial adhesion between the two materials was achieved by adding a compatibilizer, maleic anhydride grafted polypropylene, PP-g-MA. Mechanical behavior was assessed by tensile, flexural, impact and fatigue tests, and thermal behavior by HDT (Heat Deflection Temperature). Fractured surfaces and fiber were investigated by scanning electron microscopy. Multiple regression statistical analysis was performed to interpret interaction effects of the variables. Tensile strength, tensile modulus, flexural strength, flexural modulus and HDT increased after rPET fiber incorporation while strain at break, impact strength and fatigue life decreased. Addition of compatibilizer increased tensile strength, flexural strength and flexural modulus, fatigue life and HDT while tensile modulus, strain at break and impact strength decreased. However, at low fiber content, the impact strength increased, probably due to nucleation effects on PP.  相似文献   

16.
The increasing environmental awareness is driving towards novel sustainable high-performance materials applicable for future manufacturing technologies like additive manufacturing (AM). Cellulose is abundantly available renewable and sustainable raw material. This work focused on studying the properties of thermoplastic cellulose-based composites and their properties using injection molding and 3D printing of granules. The aim was to maximize the cellulose content in composites. Different compounds were prepared using cellulose acetate propionate (CAP) and commercial cellulose acetate propionate with plasticizer (CP) as polymer matrices, microcellulose (mc) and novel cellulose-ester additives; cellulose octanoate (C8) and cellulose palmitate (C16). The performance of compounds was compared to a commercial poly(lactic acid)-based cellulose fiber containing composite. As a result, CP-based compounds had tensile and Charpy impact strength properties comparable to commercial reference, but lower modulus. CP-compounds showed glass transition temperature (Tg) over 58% and heat distortion temperature (HDT) 12% higher compared to reference. CAP with C16 had HDT 82.1 °C. All the compounds were 3D printable using granular printing, but CAP compounds had challenges with printed layer adhesion. This study shows the potential to tailor thermoplastic cellulose-based composite materials, although more research is needed before obtaining all-cellulose 3D printable composite material with high-performance.  相似文献   

17.
Flammability of recycled polypropylene (PP)/low density polyethylene (LDPE)/high density polyethylene (HDPE) ternary blends containing date palm fibres is investigated in this study. Melt blending is used for the composite preparation and the palm fibres induce good mechanical strength to the blend composites. The effect of flame retardant magnesium hydroxide, is studied through the limiting oxygen index analysis and cone calorimeter studies. Morphology of the palm fibres in presence of fire retardant reveals interesting facts of base hydrolysis. Since the polymers used are recycled ones and the fibres are obtained from the date palm leaves, the whole composite manufactured stands as low cost, less energy consuming and environmental friendly. Though the flame retardant reduced the mechanical properties, the palm fibres strengthened the whole composite thus helping to achieve the flame retardancy and mechanical properties simultaneously. Flame retardancy is correlated with the thermal degradation and thermal conductivity of the blend fibre composites as well.  相似文献   

18.
Plastics, also called synthetic polymers, are playing an important role in daily living. To raise more applications it is necessary to modify known polymeric systems to reach improved materials/material systems. A possibility to create new optimised materials out of neat polymers is offered by compounding them with different filling material. Besides chemical modification of polymers, mixing, combining or use of different fillers, one possibility is given by the composite technique, whereas the combination of the polymeric matrix and the embedded reinforcement (e.g. fibre) are yielding in optimised materials adjusted to the required properties. Concerning the polymeric matrix, either thermoplastic or thermoset material can be used. In case of the reinforcement, either synthetic (carbon-, glass- or polymeric fibres) or natural fibres are introduced to composites. To obtain an appropriate adhesion of the matrix to the reinforcement system, synthetic fibres are equipped with an avivage. For natural fibres, there are no such materials available and the hydrophilic property of this system surface prevents an adhesion to hydrophobic polymers, as well as to sizings. In this paper, ways are shown to modify the natural fibres via chemical treatment to yield higher physical properties at better adhesion. Also we will explain activities on the use of natural fibres as reaction systems and processing tools as well as the attempt to isolate the different compounds of the neat fibre via selective work-up.  相似文献   

19.
Accelerated thermal and photo-aging of four homopolymers, low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP) and high-impact polystyrene (HIPS), was performed and the impact of subsequent reprocessing conditions on their properties studied. Polymer samples oven-aged at 100 °C for varying periods of time or UV irradiated in a Weather-o-meter (WOM) at λ = 340 nm were reprocessed in a Brabender plasticorder at 190 °C/60 rpm for 10 min. Chemical changes and the evolution of rheological and mechanical properties accompanying the gradual degradation of the individual polymers were monitored and evaluated (DSC, FTIR, colorimetric method, MFI, tensile impact strength). LDPE and HIPS were found to be more susceptible to thermo-oxidation than HDPE and PP, whereas HDPE and PP were affected to a greater extent by UV exposure; the crucial role here is being played by the stabilization of the studied resins. In HDPE the scission and crosslinking reactions competed both in thermo-and photo-degradation. In the case of LDPE, scission prevailed over branching during thermo-oxidation, whereas photo-oxidation of the same sample led predominantly to crosslinking. Abrupt deterioration of the LDPE rheological properties after one week of thermal exposure was suppressed by re-stabilization. The scission reaction was also predominant for PP during thermo-oxidation, and it took place even faster during UV exposure. In the case of HIPS a slight photo-degradation of PS matrix is accompanied by simultaneous crosslinking of the polybutadiene component.  相似文献   

20.
Rossells fiber reinforced polypropylene composites were prepared by melt mixing. The fiber content was 20 wt%. Octadecyltrimethoxysilane (OTMS) and maleic anhydride grafted polypropylene (MAPP) were used to improve the adhesion between poly(propylene) (PP) and the fiber. The mechanical, rheological, and morphological properties, and heat distortion temperature (HDT) of the composites were investigated. Tensile strength, impact strength, flexural strength and HDT of MAPP modified PP composites increased with an increase in MAPP content. However, no remarkable effect of MAPP content on the Young's modulus of the composites was found. OTMS resulted in small decreases of tensile strength and Young's modulus, and increase in impact strength. Scanning electron micrographs revealed that MAPP enhanced surface adhesion between the fiber surface and PP matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号