首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aluminum- and chromium-substituted barium ferrite particles with single magnetic domain were prepared using self-propagating combustion method. The crystalline structure, size, coercivity and microwave absorption property of the particles were investigated by means of X-ray diffraction, transmission electron microscopy, vibrating sample magnetometry and vector network analyzer. The results show that the crystalline structure of BaFe12−xAlxO19 is still hexagonal. But when the chromium substitution amount y exceeds 0.6, the extra chromium ions cannot enter the lattice of BaFe12−yCryO19. After Fe3+ is partly substituted with Al3+ and Cr3+, the microwave absorption properties of barium ferrite are improved. The maximum absorption reaches 34.76 dB. The ferromagnetic resonance is an important channel of barium ferrite to absorb microwaves with high frequency. Aluminum and chromium substitutions change the ferromagnetic resonant frequency of barium ferrite. The multipeak phenomenon of the ferromagnetic resonance increases the microwave absorption capability of barium ferrite.  相似文献   

2.
Ce-substituted barium ferrite with chemical composition BaCe0.05Fe11.95O19 has been prepared by the citrate sol-gel method. The phase composition of BaCe0.05Fe11.95O19 was characterized by X-ray powder diffraction analysis (XRD). The complex permittivity and complex permeability, microwave absorption properties of the resulting powder were measured by the transmission/reflection coaxial line method in the range of 8-13 GHz. The results show that the resulting powder has a minimum reflection loss value of - 37.4 dB at 12.8 GHz with a matching thickness of 3.5 mm.  相似文献   

3.
黄海龙  夏辉  郭智博  陈羽  李宏建 《中国物理 B》2017,26(2):25207-025207
The composite that can absorb the high-performance electromagnetic(EM) wave is constructed into a sandwiched structure composed of carbon black(CB)/ethylene-vinyl acetate(EVA) and Ag naowires(Ag NWs). The Ag NWs sandwiched between two CB/EVA layers are used to improve the absorption properties of composite. The effects of EVA-to-CB weight ratio, concentration and diameter of Ag NWs with a thickness of 0.4 mm on microwave absorption are investigated.The results indicate that for an EVA-to-CB weight ratio of 1:3, Ag NW concentration of 1.0 mg/100 m L, and average diameter of 56 nm, the reflection loss(RL) of the composite is below-10 d B in a frequency range of 9.3 Ghz–18.0 GHz, with the minimum values of-40.0 d B and-25.6 d B at 13.5 GHz and 15.3 GHz, respectively. A finite element method(FEM)is used for calculating the RL of the composite. The calculated results are in agreement with the experimental data.  相似文献   

4.
In this work carbonyl iron/La0.6Sr0.4MnO3 composites were prepared to develop super-thin microwave absorbing materials. The complex permittivity, permeability and microwave absorption properties are investigated in the frequency range of 8-12 GHz. An optimal reflection loss of −12.4 dB is reached at 10.5 GHz with a matching thickness of 0.8 mm. The thickness of carbonyl iron/La0.6Sr0.4MnO3 absorber is thinner, compared with conventional carbonyl iron powders with the same absorption properties. The bandwidth with a reflection loss exceeding −7.4 dB is obtained in the whole measured frequency range with the thickness of 0.8 mm. The excellent microwave absorption properties are attributed to a better electromagnetic matching established by the combination of the enhanced dielectric loss and nearly invariable magnetic loss with the addition of La0.6Sr0.4MnO3 nanoparticles in the composites. Our work indicates that carbonyl iron/La0.6Sr0.4MnO3 composites may have an important application in wide-band and super-thin electromagnetic absorbers in the frequency range of 8−12 GHz.  相似文献   

5.
Microwave absorbing materials filled with BaTiO3 and carbonyl iron (CI) particles with various weight fractions (BaTiO3/CI particles=100/0 to 0/100) are investigated. The dielectric and magnetic properties of the absorbers can be tuned by changing the weight ratio of BaTiO3/CI particles in the frequency range of 2-18 GHz. Numerical simulations are also performed to design a single-layer and double-layer absorber. The minimum reflection loss of the composite filled with 20 wt% BaTiO3 and 60 wt% CI particles at 2.0 mm thickness can be reached to −42 dB at 4.1 GHz. With the weight ratio of CI particles in the composite increased, the microwave absorption peak shifted to the lower frequency region. By using a double-layer absorber structure, the microwave absorption performance of the absorber is enhanced. The result shows that the total thickness of the absorber can be reduced below 1.4 mm by using a matching layer filled with 50 wt% BaTiO3, and an absorption layer filled with 60 wt% BaTiO3 and 20 wt% CI particles, whereas the reflection loss below −10 dB can be obtained in the frequency range of 10.8-14.8 GHz and the minimum reflection loss of −59 dB can be obtained at 12.5 GHz.  相似文献   

6.
The surface of carbonyl iron powder or a mixture of carbonyl iron and ferrite was coated with polymethylmethacrylate (PMMA) microspheres by a hybridization method to make hybrid powders, and then electromagnetic wave absorption properties of the hybrid composites prepared with these hybrid powders have been investigated. As for the carbonyl iron/PMMA hybrid composite, the reflection loss less than −20 dB could be achieved in a frequency range of 1.7–5.0 GHz when the composite thickness was below 5.00 mm. In the case of the carbonyl iron-ferrite/PMMA hybrid composite, a similar reflection loss was observed in a frequency range of 4.3–13.0 GHz. Thus, the addition of ferrite was found to be useful for achieving a large absorption in a wide frequency range, especially for higher frequency values. Simulated values for the minimum reflection loss are well agreed with actually measured ones, because of homogeneous distribution of carbonyl iron and/or ferrite in these hybrid composites.  相似文献   

7.
8.
M-type barium hexaferrite BaFe12−x(Mn0.5Cu0.5Ti)x/2O19 (x varying from 0 to 3 in steps of 1) have been synthesized by the usual ceramic sintering method. The ferrite powders possess hexagonal shape and are well separated from one another. The powder of these ferrites were mixed with polyvinylchloride plasticizer to be converted in to a microwave absorbing composite. X-ray diffraction (XRD), scanning electron microscope (SEM), ac susceptometer, vibrating sample magnetometer, and vector network analyzer were used to analyze its structure, electromagnetic and microwave absorption properties. The results showed that, the magnetoplumbite structures for all the samples have been formed. The sample having higher magnetic susceptibility and coercivity exhibits a larger microwave absorbing ability. Also, the present investigation demonstrates that microwave absorber using BaFe12−x (Mn0.5Cu0.5Ti)x/2O19 (x=2x=2 and 3)/polyvinylchloride can be fabricated for the applications over 15 GHz, with reflection loss more than −25 dB for specific frequencies, by controlling the molar ratio of the substituted ions.  相似文献   

9.
《Current Applied Physics》2020,20(4):525-530
FeCoNi-coated PMMA (FeCoNi@PMMA) core-shell structures prepared by an electroless plating process were investigated in this study. Further, we fabricated FeCoNi@PMMA in polydimethylsiloxane sheets with volume fractions of fillers from 10 vol% to 25 vol% to evaluate electromagnetic wave absorption performance. Subsequently, results were compared with those of carbonyl iron particles (CIP). The maximum reflection loss (RL) of FeCoNi@PMMA composite (25 vol%) reached a value of −37.2 dB at 12.2 GHz with a thickness of 1.5 mm and a broad absorption bandwidth (RL ≤ −10 dB) of 4.5 GHz, attributed to strong dielectric and magnetic losses. Though the microwave absorption performance of the core-shell structured FeCoNi@PMMA composites is similar to that of CIP composites, the weight fraction of FeCoNi@PMMA is reduced about 38% compared with CIP with the same volume fraction (25 vol%). These results indicate that FeCoNi@PMMA is a lightweight material and a good candidate for high-performance microwave-absorbing devices.  相似文献   

10.
Anatase titania-coated barium ferrite composites were prepared by a heterogeneous precipitation method in the presence of barium ferrite particles. The obtained samples were characterized by ξ-pH, TEM, EDX and XRD. The complex permittivity and permeability were studied in the frequency range of 2-12 GHz. The structure and microwave response properties are investigated. The results show that the coverage of titania has a great influence on microwave response of barium ferrite. The formation of an anatase titania nano-layer on the surface of a barium ferrite particle changes the character of the frequency dispersion of the complex permittivity. Comparing the anatase titania-coated barium ferrite composites with the uncoated barium ferrite, the complex permittivity of the anatase titania-coated barium ferrite composites is higher than that of uncoated barium ferrite. The complex permeability of composites was found to decrease with an increase in frequency as well as with the molar ratio of Ti:Ba. The enhancement of the complex permittivity may be due to dipolar polarization and interfacial polarization. The maximum reflection loss was obtained at the Ti:Ba ratio of 1:10, and the peak of the maximum reflection loss shifts to a lower frequency value with increasing titania fraction. By changing the thickness of titania coverage, the frequency dependence of the complex permittivity could be adjusted, which provides us an opportunity for the synthesis of tailored particles.  相似文献   

11.
12.
The co-precipitation and solid state methods were used in the synthesis of barium hexaferrite (BaM). Phase pure BaM was obtained with 1, 2, 3, 5, 10, 15, 20 and 30 wt% cobalt oxide (Co3O4). The addition of Co2+/3+ ions to the BaM increased the permeability and magnetic loss tangent to a value of 3.5 at 5% and reduced to 1 at 30% doping. With increased Co doping, Ms was reduced from 87-58 emu/g, Mr increased from 11 to 40 emu/g with 3–5 wt% Co and 9 emu/g for 30% doping. Hc sharply increased from 540 to 2200 Oe with a reduction to 280 Oe at 10 K with increasing temperature to 300 K. Tc increased from 740 to 750 K for 30% Co doping. DTA–TGA studies of green body showed decarboxilation to occur at around 825 °C and the transformation of residual Co3O4 to Co2O3 at around 577 °C. The XRD data confirmed the Co ions substituting into Fe sites until a 10–15% doping level where the structure altered to W-type hexaferrite. The densities of the compounds varied with doping to a maximum of 4.45 g/cm3.  相似文献   

13.
The effect of additions on the densification of previously prepared stoichiometric barium hexaferrite, during the initial and intermediate stages of sintering, as well as on the coercivity and remanence were studied. The effect of non-stoichiometry, SiO2, Al2O3, Cr2O3, TiO2, SnO2, MnO2, MgO, NiO and Bi2O3 is included.While SiO2 and Bi2O3 form liquid phases that increase the density, Al2O3, Cr2O3 and MnO2 form a limited solid solution and are generally beneficial when added in the proper amounts. At 1300 SiO2 up to 0.55% and Al2O3 up to 1% gave better magnetic properties. On the other hand addition of TiO2, MgO, NiO or SnO2 has a deleterious effect.  相似文献   

14.
The microwave electromagnetic properties of carbonyl-iron particles as magnetic absorber and carbon fiber as conductive absorber filled insulating epoxy/silicone resin coatings were investigated. The complex permittivity of the coatings increased while the complex permeability remained almost constant in the frequency range of 2–18 GHz, when the carbon fiber content was increased and the carbonyl-iron content kept constant. The minimum reflection loss of the coatings shifted to the lower frequency region by increasing the carbon fiber content or coating thickness. When the content of carbonyl iron was 65 wt% and carbon fiber was 2 wt%, the reflection loss below −10 dB can obtain in the frequency range of 8–18 GHz with coating thickness being 1 mm.  相似文献   

15.
Composite absorbers made from 66 wt% carbonyl iron and 34 wt% low melting point glass powder were prepared by a pressureless sintering technique in a nitrogen atmosphere. Apparent porosity and bending strength of the as-prepared composites were investigated. The microstructure, heat resisting properties and electromagnetic properties were characterized by scanning electron microscopy, thermal gravimetric analysis–differential scanning calorimetry and vector network analyzer. The results show that the carbonyl iron/glass composite absorbers were difficult to densify. As the sintering temperature and soaking time increased, the apparent porosity first decreased and then increased, whereas the bending strength showed the opposite change. The composite absorber sintered at 520 °C for 40 min achieved the minimum apparent porosity of 13.08% and the highest bending strength of 52 MPa. Compared to the carbonyl iron/silicone rubber absorber, the carbonyl iron/glass composite absorber exhibited better heat resisting properties, and the initial oxidation temperature was increased about 200 °C. The composite absorber with a thickness of 1.25 mm showed a good microwave absorbing property in 8–12 GHz.  相似文献   

16.
Barium W-type hexaferrite with composition Ba0.95R0.05Mg0.5Zn0.5CoFe16O27 where R=Y, Er, Ho, Sm, Nd, Gd, and Ce ions has been prepared by the double-sintering ceramic technique. Structure of the prepared samples has been characterized by the X-ray diffraction (XRD) technique. The XRD patterns at room temperature show the presence of secondary phase with the intensity of the secondary phase increasing with increasing ionic radius of the rare earth (RE) ions. The variation of the magnetic susceptibility (χM) with temperature in the range 300–750 K at different magnetic field intensities (1280, 1733 and 2160 Oe) was studied by using Faraday's method. The results show that the Curie temperature (TC) increases regularly with increasing RE ionic radius then decreases again, after which it reaches maximum value at Sm ion of radius ≈1.04 Å. This behavior was explained on the basis of the changes in Fe3+–O–Fe3+ superexchange interaction. The effective magnetic moment μeff. of the investigated samples was discussed in view of varying the RE element as well as the magnetization of different sublattices.  相似文献   

17.
To fully release the potential of wide bandgap(WBG)semiconductors and achieve high energy density and efficiency,a carbonyl iron soft magnetic composite(SMC)with an easy plane-like structure is prepared.Due to this structure,the permeability of the composite increases by 3 times(from 7.5 to 21.5)at 100 MHz compared with to the spherical carbonyl iron SMC,and the permeability changes little at frequencies below 100 MHz.In addition,the natural resonance frequency of the composite shifts to higher frequencies at 1.7 GHz.The total core losses of the composites at 10,20,and 30 m T are80.0,355.3,and 810.7 m W/cm3,respectively,at 500 k Hz.Compared with the spherical carbonyl iron SMC,the core loss at500 k Hz is reduced by more than 60%.Therefore,this kind of soft magnetic composite with an easy plane-like structure is a good candidate for unlocking the potential of WBG semiconductors and developing the next-generation power electronics.  相似文献   

18.
Microwave absorbing characteristics of carbonyl iron/epoxy resin composite with various volume concentrations were investigated in 0.1-18 GHz. According to the electromagnetic parameters and thicknesses of the sample, numerical calculation and experiment have demonstrated that the frequency dependence of the microwave absorption comply with the quarter-wavelength (λ/4) matching model that may explain not only the peak frequency but also the number of the peaks. It implies that the quarter-wavelength condition can be successfully applied to understand and predict the peak frequency of the microwave absorption for ferromagnetic metal-based composites.  相似文献   

19.
The effect of gamma irradiation on the features of aluminum-substituted barium hexagonal ferrite particles BaAlxFe12?xO19 with 0?≤?x?≤?3.5 has been studied. Optical absorption measurements have been performed and the results reflected a great dependence of the fundamental absorption edge on the radiation dose. It is found that the calculated optical band gap (Eg) increases due to an increase in the homogeneity with an increase in the Al content. Increasing the radiation dose up to 1?MGy induces a direct transition and consequently decreases the energy gap. This behavior is associated with the generation of excess electronic localized states. Moreover, the characteristic features of the irradiated samples have been studied using a scanning electron microscope. Also, all samples were characterized using the X-ray diffraction technique, and the values of crystal size, microstrain and dislocation density were calculated. On the other hand, the magnetic behavior of the samples was studied using a vibrating sample magnetometer technique after each radiation dose. The saturation magnetization (Ms) and the magneton number (nB) decrease with an increase in the Al3+ substitution and at the same time decrease with the radiation dose 250?kGy to 1?MGy.  相似文献   

20.
Barium hexaferrite BaFe12O19 powders have been synthesized using the modified co-precipitation method. Modification was performed via the ultrasonication of the precipitated precursors at room temperature for 1 h and the additions of the 2% KNO3, surface active agents and oxalic acid. The results revealed that single phase magnetic barium hexaferrite was formed at a low annealing temperature of 800 °C for 2 h with the Fe3+/Ba2+ molar ratio 8. The microstructure of the powders appeared as a homogeneous hexagonal platelet-like structure using 2% KNO3 as the crystal modifier. A saturation magnetization (60.4 emu/g) was achieved for the BaFe12O19 phase formed at 1000 °C for 2 h with Fe3+/Ba2+ molar ratio 8 using 5 M NaOH solution at pH 10 in the presence of 2% KNO3. Moreover, the saturation magnetization was 52.2 emu/g for the precipitated precursor at Fe3+/Ba2+ molar ratio 12 in was achieved for the precipitated precursor ultrasonicated for 1 h and then annealed at 1200 °C for 2 h. Coercivities from 956.9 to 4558 Oe were obtained at different synthesis conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号