首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism for the effects of pressure on the magnetic properties and the martensitic transformation of Ni-Mn- Sn shape memory alloys is revealed by first-principles calculations. It is found that the total energy difference between paramagnetic and ferromagnetic austenite states plays an important role in the magnetic transition of Ni-Mn-Sn under pressure. The pressure increases the relative stability of the martensite with respect to the anstenite, leading to an increase of the martensitic transformation temperature. Moreover, the effects of pressure on the magnetic properties and the martensitic transformation are discussed based on the electronic structure.  相似文献   

2.
Ferromagnetic shape memory alloys, which undergo the martensitic transformation, are famous multifunctional materials. They exhibit many interesting magnetic properties around the martensitic transformation temperature due to the strong coupling between magnetism and structure. Tuning magnetic phase transition and optimizing the magnetic effects in these alloys are of great importance. In this paper, the regulation of martensitic transformation and the investigation of some related magnetic effects in Ni-Mn-based alloys are reviewed based on our recent research results.  相似文献   

3.
Micromemory effects in shape memory alloys   总被引:2,自引:0,他引:2  
Summary Thermoelastic martensitic transformations (TMT) have been on the stage for several years in connection with shape memory alloys. Interest has recently grown in partial cycling or involving the incomplete reverse transformation in a pre-programmable way. Attention is here focussed on the hysteresis cycle of several TMT (NiTi, NiTiFe, AgCd) related either to a complete transformation or to incomplete cycling as required to activate stimulated stepwise martensite-to-austenite reversible transformation (SMART). The modifications of the hysteresis cycles are discussed in the light both of built-in kinetics barriers and of the hierarchy of symmetries between parent and product phase. In honour of Prof. Fausto Fumi on the occasion of his retirement from teaching.  相似文献   

4.
郑红星  刘剑  夏明许  李建国 《物理学报》2005,54(4):1719-1721
采用差示扫描量热和x射线衍射技术研究Ni-Fe-Ga磁致形状记忆合金的马氏体相变行为.结 果发现,在多晶Ni56556.5Fe19019.0Ga2452 4.5和Ni56356.3Fe17017.0 Ga26726.7合金中除马氏体相变外,还观察到一次完整的、正相变和逆相 变对应出现、单 纯由温度诱发的中间马氏体相变.该中间马氏体相变与马氏体相变均为热弹性相变. 关键词: Ni-Fe-Ga 中间马氏体相变 磁致形状记忆合金  相似文献   

5.
The evolution of multivariant patterns in thin plates of magnetic shape memory materials with an applied magnetic field was studied theoretically. A geometrical domain-model is considered composed of straight stripe-like martensite variants with constant internal magnetization (high anisotropy limit) and magnetic domain wall orientation fixed by the twin boundaries. Through integral transforms of the demagnetization energy, the micromagnetic energy is cast into a form convenient for direct numerical evaluation and analytical calculations. The equilibrium geometrical parameters of multivariant patterns with straight and oblique twin boundaries have been derived as functions of the applied field and the material parameters of a plate. It is shown that the oblique multivariant states exist only in plates with thicknesses L larger than a certain critical value L0. In samples with L<L0 a magnetic-field-driven transformation occurs directly between single variant states.  相似文献   

6.
The influence of Fe additions on the martensitic transformation and magnetic properties of Mn-rich Ni-Mn-Ga alloys was investigated by substituting either 1 at% Fe for each atomic species or by substituting Ni with varying amounts of Fe. The magnetic structure of the alloys was studied using 57Fe Mössbauer spectroscopy. Mössbauer spectra revealed typical paramagnetic features in Mn-rich Ni-Mn-Ga-Fe alloys owing to the preferential site occupancy of Fe atoms at Ni sites. The evolution of the magnetic properties and phase stability has been correlated with the chemical and atomic ordering in these alloys.  相似文献   

7.
李盼盼  王敬民  蒋成保 《中国物理 B》2011,20(2):28104-028104
This paper studies the martensitic transformation in the Cu-doped NiMnGa alloys. The orthorhombic martensite transforms to L21 cubic austenite by Cu substituting for Ni in the Ni50-xCuxMn31Ga19 (x=2--10) alloys, the martensitic transformation temperature decreases significantly with the rate of 40 K per Cu atom addition. The variation of the Fermi sphere radius (kF) is applied to evaluate the change of the martensitic transformation temperature. The increase of kF leads to the increase of the martensitic transformation temperature.  相似文献   

8.
The effect of the grain size and transverse film size in nano-and micrometer ranges on the parameters of martensitic transitions in shape memory alloys is theoretically considered in the framework of the theory of diffuse martensitic transitions. A quantitative analysis of the size effects is performed including not only the thermodynamic aspect of the martensitic transformation but also its kinetic aspect, which is particularly sensitive to structural and size factors. This complex approach makes it possible to explain the following three basic facts associated with the influence of a decreased grain size or transverse film size on the parameters of the martensitic transition in shape memory alloys: a decrease in the critical (characteristic) transition temperature, an increase in the transition temperature smearing, and the existence of a critical grain size or film thickness below which the martensitic transformation in alloys is blocked.  相似文献   

9.
The elastic, magnetoelastic, and phonon properties of Ni_2FeGa were investigated through first-principles calculations.The obtained elastic and phonon dispersion curves for the austenite and martensite phases agree well with available theoretical and experimental results. The isotropic elastic moduli are also predicted along with the polycrystalline aggregate properties including the bulk modulus, shear modulus, Young's modulus, and Poisson's ratio. The Pugh ratio indicates that Ni_2FeGa shows ductility, especially the austenite phase, which is consistent with the experimental results. The Debye temperatures of the Ni_2FeGa in the austenite and martensite phases are 344 K and 392 K, respectively. It is predicted that the magnetoelastic coefficient is -5.3 × 10~6 J/m~3 and magnetostriction coefficient is between 135 and 55 ppm in the Ni_2FeGa austenite phase.  相似文献   

10.
Under certain conditions the first order geometric auto regressive (AR) process has statistical properties similar to atmospheric boundary layer wind speed. In this contribution, we investigate this similarity and analyse the extent to which this stochastic process is a suitable model for wind speed simulation. In particular, we focus on the fluctuation of the process around its moving average over a given number of time steps. We show that the fluctuation conditioned on the value V of the moving average are of a symmetric normal distribution with a proportionality between its standard deviation and V. This proportionality is empirically observed in wind speed data. Furthermore, we show that the increment distribution of the geometric AR(1) process is in good agreement with the symmetric Castaing distribution which is empirically found in wind speed data.  相似文献   

11.
The microstructure and properties of TiNi-based shape memory alloys subjected to severe plastic deformation by torsion have been studied using transmission electron microscopy, X-ray diffraction analysis, and mechanical measurements.  相似文献   

12.

The effect of the magnetic field on the deformation behavior of magnetic alloys of the Heusler type under different loading conditions is discussed in terms of the theory of diffuse martensitic transitions. The effects of magnetic shape memory, pseudoelastic deformation, and generation of reactive stresses in response to the magnetic field are considered. The theoretical relationships are compared with the experimental data available in the literature.

  相似文献   

13.
Structural and magnetic transition temperatures of ferromagnetic shape memory alloys present a strong dependence on slight departures from the stoichiometry, as does the mobility of twin boundaries responsible for the large magnetic field induced strains. In this work we study four non stoichiometric Ni-Mn-Ga polycrystalline alloys with compositions of 43–52 at.% nickel, excess manganese and deficient in gallium, and a single crystal of composition Ni52Mn26Ga22. Those compounds are of technical interest due to the observed large room temperature magnetic field induced strains. Calorimetric and magnetic measurements determined the martensitic transition and Curie temperatures of the alloys (AS = 331 K and TCurie = 366 K for 52 at.% nickel alloy). Nickel defective alloys present a martensitic transition region broader than excess nickel ones. Neutron powder diffraction analysis confirmed orthorhombic martensitic structures for nickel defective alloys, and tetragonal for excess nickel ones. In the 52 atomic % nickel alloys case the crystallographic structure of the martensitic phase was also obtained on a single crystal with the same composition, trained to get a single variant in agreement with determined in the powder sample.  相似文献   

14.
在单晶Ni54Fe19Ga27中掺入少量Mn,对增强磁交换相互作用,提高居里温度和稳定了B2相并增强晶格的刚度,起到了非常明显的作用.Mn的存在使样品中取向内应力得以保持,提高了变体择优取向的水平,大大提高了单晶的相变应变和磁场增强作用.发现内应力对超弹性性质的影响也很明显. 关键词: 磁性形状记忆合金 NiFeGa 单晶 超弹性  相似文献   

15.
16.
Partially substituting Sb for In, we found an irreversible transformation of martensite to intermartensite at 90 K in Ni50Mn34In12Sb4 alloy during heating. The reverse transformation of martensite and intermartensite to the parent phase induced by a magnetic field has been investigated. The results indicate that, if a sufficiently high magnetic field is applied, the intermartensite state is no longer necessary as an intermediate state. Thus, a difference of the transformation originating from magnetic and from thermal energies has been found. In this competition, lattice distortions play an important role to promote the occurrence of the intermediate intermartensitic path.  相似文献   

17.
The temperature dependent spin momentum densities of Co(1.8)NiGa(1.2) and Co(2)Ni(0.76)Ga(1.24) alloys have been measured using the magnetic Compton scattering technique. The individual contributions of constituents in the formation of the total spin moment are also calculated using Compton line shape analysis. The magnetic Compton data when compared with the magnetization data obtained using a vibrating sample magnetometer show a negligible orbital contribution. The spin moments deduced from the experimental Compton data are compared with the theoretical results obtained from the full potential linearized augmented plane wave method and are found to be in good agreement. The origin of the magnetism in both alloys is also described in terms of the e(g) and t(2g) contributions of Ni and Co.  相似文献   

18.
We study the shape memory Ti50Ni25Cu25 (at %) alloy fabricated by melt spinning. The techno-logical parameters were optimized to obtain the alloy in the amorphous state. The dynamic crystallization of the alloy by a single electric pulse with durations of 1 to 100 ms was used to form the nanostructural state. Transmission electron microscopy and differential scanning calorimetry study show that reducing the pulse duration to 2 ms resulted in considerable refinement of the alloy with the formation of nanosized martensitic plates (20–60 nm). It was established that nanostructurization of the alloy can lead to an increase in the value of the recovery strain when the shape memory effect is manifested.  相似文献   

19.
利用X射线和磁性测量研究了Co77Zr(18-x)Mo5Bx合金薄带的结构和磁性.实验发现,在Co-Zr-Mo合金中添加适当含量的B,可以使其矫顽力显著提高,当x=2.0时,制备出具有迄今为止Co-Zr基永磁合金最大矫顽力Hc=7.0 kOe(1 Oe=79.5775 A/m)的快淬薄带.随着B元素添加,Co77Zr18-xMo5Bx合金薄带的晶粒逐渐细化,并根据Henkel plot模型计算得出软磁相fcc-Co与硬磁相Co5Zr相之间的交换耦合作用逐渐增强.合金薄带的矫顽力主要受硬磁相Co5Zr相的晶粒尺寸控制,并随着晶粒尺寸的减小先升高后降低.另一方面,Co77Zr18Mo5合金薄带的矫顽力机理为反磁化核形核模型,添加B元素之后矫顽力机理变为畴壁钉扎模型.通过X射线衍射和热磁分析发现,B元素并没有进入到Co5Zr相的晶格中,而是存在于非晶相中.  相似文献   

20.
The NiTi shape memory alloy exhibits excellent superelastic property and elastocaloric effect. The large temperature change(DT) value of 30 K upon loading and-19 K upon unloading are obtained at room temperature, which are higher than those of the other NiTi-based materials and among the highest values reported in the elastocaloric materials. The asymmetry of the measured DT values between the loading and unloading process is ascribed to the friction dissipation.The large temperature change originates from the large entropy change during the stress-induced martensite transformation(MT) and the reverse MT. A large coefficient-of-performance of the material is obtained to be 11.7 at ε= 1%, which decreases with increasing the applied strain. These results are very attractive in the present solid-state cooling, which potentially could replace the vapor compression refrigeration technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号