首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Highly conductive and transparent indium tin oxide (ITO) thin films, each with a thickness of 100 nm, were deposited on glass and Si(100) by direct current (DC) magnetron sputtering under an argon (Ar) atmosphere using an ITO target composed of 95% indium oxide and 5% tin oxide for photon-STM use. X-ray diffraction, STM observations, resistivity and transmission measurements were carried out to study the formation of the films at substrate temperatures between 40 and 400 °C and the effects of thermal annealing in air between 200 and 400 °C for between1 and 5 h. The film properties were highly dependent on deposition conditions and on post-deposition film treatment. The films deposited under an Ar atmosphere pressure of ∼1.7×10-3 Torr by DC power sputtering (100 W) at substrate temperatures between 40 and 400 °C exhibited resistivities in the range 3.0–5.7×10-5 Ω m and transmissions in the range 71–79%. After deposition and annealing in air at 300 °C for 1 h, the films showed resistivities in the range 2.9–4.0×10-5 Ω m and transmissions in the range 78–81%. Resistivity and transmission measurements showed that in order to improve conductive and transparent properties, 2 h annealing in air at 300 °C was necessary. X-ray diffraction data supported the experimental measurements of resistivity and transmission on the studies of annealing time. The surface roughness and film uniformity improve with increasing substrate temperature. STM observations found the ITO films deposited at a substrate temperature of 325 °C, and up to 400 °C, had domains with crystalline structures. After deposition and annealing in air at 300 °C for 1 h the films still exhibited similar domains. However, after deposition at substrate temperatures from 40 °C to 300 °C, and annealing in air at 300 °C for 1 h, the films were shown to be amorphous. More importantly, the STM studies found that the ITO film surfaces were most likely to break after deposition at a substrate temperature of 325 °C and annealing in air at 300 °C for 2 or 3 h. Such findings give some inspiration to us in interpreting the effects of annealing on the improvement of conductive and transparent properties and on the transition of phases. In addition, correlations between the conductive/transparent properties and the phase transition, the annealing time and the phase transition, and the conductive/transparent properties and the annealing time have been investigated. Received: 10 July 2000 / Accepted: 27 October 2000 / Published online: 9 February 2001  相似文献   

2.
Hydrogenated amorphous silicon carbide (a-Si1-xCx:H) films were deposited by RF plasma enhanced chemical vapor deposition (PECVD) and subsequently annealed in N2 atmosphere at different temperatures. Systematic investigations of the deposition temperature and annealing effect on the film's properties, including film thicknesses, optical bandgap, refractive indexes, absorption coefficient (α), chemical bond configurations, stoichiometry and crystalline structures, were performed using ellipsometry, FTIR absorbance spectroscopy, Raman spectroscopy, XPS, and XRD. All of the results indicate that the structural and optical properties of the a-Si1-xCx:H film can be effectively engineered by proper annealing conditions. Moreover, molecular vibrational level equation was introduced to explain the peak shift detected by FTIR and Raman spectroscopy.  相似文献   

3.
We report the preparation of multiferroic BiFeO3 thin films on ITO coated glass substrates through sol-gel spin coating method followed by thermal annealing and their modification by swift heavy ion (SHI) irradiation. X-ray diffraction and Raman spectroscopy studies revealed amorphous nature of the as deposited films. Rhombohedral crystalline phase of BiFeO3 evolved on annealing the films at 550°C. Both XRD and Raman studies indicated that SHI irradiation by 200 MeV Au ions result in fragmentation of particles and progressive amorphization with increasing irradiation fluence. The average crystallite size estimated from the XRD line width decreased from 38 nm in pristine sample annealed at 550°C to 29 nm on irradiating these films by 200 MeV Au ions at 1 × 1011 ions cm−2. Complete amorphization of the rhombohedral BiFeO3 phase occurs at a fluence of 1 × 1012 ions.cm−2. Irradiation by another ion (200 MeV Ag) had the similar effect. For both the ions, the electronic energy loss exceeds the threshold electronic energy loss for creation of amorphized latent tracks in BiFeO3.  相似文献   

4.
We report preparation of phase pure BiFeO3 thin films on glass, ITO and Si(100) substrates through chemical route using spin coating technique. Sol-gel process was adopted to prepare the films using bismuth nitrate and iron nitrate as precursors. X-Ray diffraction and Raman spectroscopy studies revealed amorphous nature of the as deposited films. Rhombohedral crystalline phase of BiFeO3 evolved on annealing the films at 500°C, but with Bi2Fe4O9 and Bi24Fe2O39 as impurity phases. Increasing the annealing temperature to 550°C caused a drastic reduction of the impurity phases and at 600°C, the films were phase-pure BiFeO3. Micro Raman spectra showed features consistent with the reported characteristic peaks of BiFeO3 crystalline phase for films annealed at 500 and 550°C. Crystallite size obtained from X-ray diffraction line width analysis are within 30 to 40 nm. Atomic force microscopy (AFM) however showed grain size of ∼192 nm, indicating polycrystalline nature of the grains.   相似文献   

5.
碳化硅薄膜脉冲激光晶化特性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
于威  何杰  孙运涛  朱海丰  韩理  傅广生 《物理学报》2004,53(6):1930-1934
采用XeCl准分子激光对非晶碳化硅(a-SiC)薄膜的脉冲激光晶化特性进行了研究.通过原子力显微镜(AFM)和Raman光谱技术对退火前后薄膜样品的形貌、结构及物相特性进行了分析.结果表明,选用合适的激光能量采用激光退火技术能够实现a-SiC薄膜的纳米晶化.退火薄膜中的纳米颗粒大小随着激光能量密度的增加而增大;Raman谱分析结果显示了退火后的薄膜的晶态结构特性并给出了伴随退火过程存在的物相分凝现象.根据以上结果并结合激光退火特性,对a-SiC的脉冲激光晶化机理进行了讨论. 关键词: 激光退火 晶化 碳化硅  相似文献   

6.
退火对TiO2薄膜形貌、结构及光学特性影响   总被引:1,自引:0,他引:1  
利用射频磁控溅射技术在熔融石英基片上制备TiO<,2>薄膜,采用X射线衍射、扫描电子显微镜(SEM)、拉曼光谱以及透过谱研究了退火温度和退火气氛对TiO<,2>薄膜的结构、形貌和光学特性的影响.实验结果表明:在大气环境下退火,退火温度越.高,薄膜晶化越好,晶粒明显长大,温度高于700℃退火的薄膜,金红石相已明显形成.实验还发现,退火气氛对金红石相的形成是非常重要的,拉曼光谱反应出Ar气氛退火,抑制了金红石晶相的发育,薄膜仍以锐钛矿相为主.Ar气氛退火的薄膜在可见光范围内的透过率比大气退火的要低,并且由透过率曲线推知:金红石的光学带隙约为2.8 eV,比锐钛矿的光学带隙小0.2 eV.  相似文献   

7.
宋捷  郭艳青  王祥  丁宏林  黄锐 《物理学报》2010,59(10):7378-7382
利用等离子体增强化学气相沉积技术,在高氢稀释条件下,研究不同激发频率对纳米晶硅薄膜生长特性的影响.剖面透射电子显微镜(TEM)分析结果显示,不同激发频率下制备的纳米晶硅薄膜晶化区均呈锥状结构生长,但13.56 MHz激发频率下制备的纳米晶硅薄膜最初生长阶段存在非晶态孵化层,即纳米晶硅薄膜的形成经历了由非晶态孵化层到晶态结构层的转变.而高激发频率(40.68 MHz)下硅纳米晶则能直接在非晶态衬底上生长形成.Raman谱和红外吸收谱测量结果表明高激发频率(40.68 MHz)下制备的纳米晶硅薄膜不但具有较高  相似文献   

8.
二氧化钛薄膜的制备及退火对其形貌、结构的影响   总被引:1,自引:0,他引:1  
利用磁控溅射技术,在石英基片上沉积Ti膜,分别在400、600、700、900℃的大气中退火获得TiO2薄膜。采用这种制备方式获得的TiO2薄膜呈现不同的颜色,退火温度为400℃的样品为暗紫红色,600℃时为黑色,而在700℃和900℃时均为黄色。采用X射线衍射、扫描电子显微镜(SEM)以及Raman光谱等手段研究了退火温度对TiO2薄膜的结构和形貌的影响。结果表明:退火温度为400℃时,TiO2薄膜为锐钛矿相,温度升高至600℃时,几乎转变为金红石晶相,但仍存在微量锐钛矿相,温度升高至700℃以上,则完全转变为金红石晶相。由XRD衍射图可知退火温度为700℃和900℃时,薄膜的金红石相沿(101)晶面择优取向。  相似文献   

9.
Cobalt (Co)-induced crystalline silicon (Si) growth was investigated. The Co catalyst reacted to dc magnetron sputtered Si at 600 °C forming a Co silicide layer. The polycrystalline Si (poly-Si) was epitaxially grown above the Co silicide template, which has a small lattice misfit to Si. Annealing followed to improve the Si crystallinity. X-ray diffraction was performed to trace Co silicide phase formation and transition. The Co-rich silicide phase transitioned to CoSi2 by annealing. The crystallinity of Si films was identified using reflection absorption Fourier transform-infrared spectroscopy, which detected unique peaks at 689 and 566 cm−1 after the annealing process. The thin poly-Si film was used to fabricate a Schottky diode to prove the electronic quality. A good quality Si thin film was achieved by the metal-induced Si growth.  相似文献   

10.
In this paper, epitaxial silicon films were grown on annealed double layer porous silicon by LPCVD. The evolvement of the double layer porous silicon before and after thermal annealing was investigated by scanning electron microscope. X-ray diffraction and Raman spectroscopy were used to investigate the structural properties of the epitaxial silicon thin films grown at different temperature and different pressure. The results show that the surface of the low-porosity layer becomes smooth and there are just few silicon-bridges connecting the porous layer and the substrate wafer. The qualities of the epitaxial silicon thin films become better along with increasing deposition temperature. All of the Raman peaks of silicon films with different deposition pressure are situated at 521 cm−1 under the deposition temperature of 1100 °C, and the Raman intensity of the silicon film deposited at 100 Pa is much closer to that of the monocrystalline silicon wafer. The epitaxial silicon films are all (4 0 0)-oriented and (4 0 0) peak of silicon film deposited at 100 Pa is more symmetric.  相似文献   

11.
富硅氮化硅薄膜的制备及其光学带隙研究   总被引:2,自引:0,他引:2       下载免费PDF全文
林娟  杨培志  化麒麟 《发光学报》2012,33(6):596-600
采用双极脉冲磁控反应溅射法在不同参数条件下制备了一系列氮化硅薄膜。利用数字式显微镜和紫外-可见光光谱仪研究了沉积薄膜的表面形貌及其光学带隙,利用共焦显微拉曼光谱仪比较了硅衬底、氮化硅薄膜退火前后的拉曼光谱。结果表明,氮气流量对薄膜的光学带隙影响较大,制备的薄膜主要为富硅氮化硅薄膜。原沉积薄膜的拉曼光谱存在明显的非晶硅和单晶硅峰,退火处理后非晶硅峰减弱或消失,表明薄膜出现明显的结晶化;单晶硅峰出现频移现象,表明薄膜中出现硅纳米颗粒,平均尺寸约为6.6 nm。  相似文献   

12.
Hydrogenated silicon (Si:H) thin films were obtained by plasma‐enhanced chemical vapor deposition (PECVD). Raman spectroscopy was used to investigate the structural evolution in phosphor‐doped n‐type amorphous hydrogenated silicon thin films, which were prepared under different substrate temperatures and gas pressures. Meanwhile, the effect of nitrogen doping on the structure of P‐doped thin films was also investigated by Raman spectroscopy. Moreover, the transition from the amorphous state to the nanocrystalline state of undoped Si:H films deposited through low argon dilution was studied by Raman spectroscopy, X‐ray diffraction, and transmission electron microscopy. The results show that Raman spectroscopy can sensitively detect the structural evolution in hydrogenated silicon thin films deposited under different conditions in a PECVD system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
采用等离子体增强化学气相沉积(PECVD)技术制备了一系列不同氢稀释率下的硅薄膜,采用拉曼散射光谱和傅里叶红外光谱技术研究了非晶/微晶相变区硅薄膜的微观结构变化,将次晶结构(paracrystalline structure)引入到非晶/微晶相变区硅薄膜结构中,提出了次晶粒体积分数(fp),用来表征硅薄膜中程有序程度。结果表明,氢稀释率的提高导致硅薄膜经历了从非晶硅到微晶硅的相变过程,在相变区靠近非晶相的一侧,硅薄膜表现出氢含量高、结构致密和中程有序度高等特性,氢在薄膜的生长中主要起到表面钝化作用。在相变区靠近微晶相的一侧,硅薄膜具有氢含量低、晶化率高和界面体积分数小等特性,揭示了氢的刻蚀作用主控了薄膜生长过程。采用扫描电子显微镜对样品薄膜的表面形貌进行分析,验证了拉曼散射光谱和傅里叶红外光谱的分析结果。非晶/微晶相变区尤其是相变区边缘硅薄膜结构特性优良,在太阳能电池应用中适合用作硅基薄膜电池本征层。  相似文献   

14.
利用电沉积硒气氛下后续退火的工艺制备出了高结晶质量的铜铟硒薄膜.通过X射线衍射、扫描电子显微镜、拉曼光谱、紫外-可见-近红外光谱和阻抗谱技术对退火后的铜铟硒薄膜进行表征,结果表明530 oC硒化退火后的铜铟硒薄膜具有四方的黄铜矿晶体结构,晶粒尺寸达到微米量级,光学带隙为0.98 eV,经过KCN溶液去除表面高导电性的铜硒化合物后铜铟硒薄膜的载流子浓度在1016 cm-3量级.利用硒化退火的铜铟硒薄膜作为光吸收层制备了结构为AZO/i-ZnO/CdS/CIS/Mo/glass的太阳能电池,在AM1.5光照条件下对其电流-电压特性测试后发现面积为0.2 cm2的电池可以达到0.96%的能量转换效率,并对限制电池效率的原因做出了初步的分析和讨论.  相似文献   

15.
This article discusses the results of transmission electron microscopy (TEM)-based investigation of nickel silicide (NiSi) thin films grown on silicon. Nickel silicide is currently used as the CMOS technology standard for local interconnects and in electrical contacts. Films were characterized with a range of TEM-based techniques along with glancing angle X-ray diffraction. The nickel silicide thin films were formed by vacuum annealing thin films of nickel (50 nm) deposited on (100) silicon. The cross-sectional samples indicated a final silicide thickness of about 110 nm. This investigation studied and reports on three aspects of the thermally formed thin films: the uniformity in composition of the film using jump ratio maps; the nature of the interface using high resolution imaging; and the crystalline orientation of the thin films using selected-area electron diffraction (SAED). The analysis highlighted uniform composition in the thin films, which was also substantiated by spectroscopy techniques; an interface exhibiting the desired abrupt transition from silicide to silicon; and desired and preferential crystalline orientation corresponding to stoichiometric NiSi, supported by glancing angle X-ray diffraction results.  相似文献   

16.
Nanostructured europium-doped yttrium oxide thin films with lithium as a co-dopant were prepared using pulsed laser ablation technique. X-ray diffraction studies of the films indicated amorphous nature of the as deposited films and a transformation to crystalline phase with increase of annealing temperature. In this transformation, lithium co-doped films showed early crystallization. Lithium substitution resulted not only in enhancement of photoluminescence at 612 nm, resulting from 5D0-7F2 transition within europium, but also found to reduce the required processing temperature for intense photoemission. The deviation observed in the value of lattice constant of films annealed at different temperatures is found to be sensitive to annealing temperature. In the light of this, the dependence of photoluminescence intensity on the magnitude of lattice imperfection is also discussed. The morphology and transmittance of the films are also found to be sensitive to annealing process and lithium doping.  相似文献   

17.
(Pb,Ca)TiO3 (PCT) thin films have been deposited on Pt/Ti/SiO2/Si substrate by metal-organic decomposition (MOD) technique. The film processing parameters such as drying and annealing temperatures have been optimized to obtain good-quality PCT films. Compositional analysis of the film has been studied by X-ray photoelectron spectroscopy (XPS). The effect of the annealing temperature on the crystalline structure, microstructure and electrical properties have been investigated by X-ray diffraction, atomic force microscopy (AFM) and impedance analyzer, respectively. Amorphous PCT films form at 350 °C and crystallize in the perovskite phase following the isothermal annealing at ?650 °C for 3 h in oxygen ambient. Typical tetragonal structure of the PCT film is evidenced from X-ray diffraction pattern. The grain size in the PCT films increases with an increase in annealing temperature. Significant improvement in the dielectric constant value is observed as compared to other reported work on PCT films. The observed dielectric constant and dissipation factor at 100 kHz for 650 °C annealed PCT films are 308 and 0.015, respectively. The correlation of the film microstructural features and electrical behaviors is described.  相似文献   

18.
A titanium dioxide precursor sol flowing through a needle at a flow rate of 10-10 m3 s-1 was subjected to an electric field of 4.5 kV to generate droplets in the size range 0.3–6 μm. The droplets were collected on a silicon substrate to form uniformly thick, dense films. Raman spectroscopy, X-ray diffraction, field emission scanning electron microscopy and UV/Vis spectroscopy were used to characterize as-deposited and annealed films. Raman spectra show the annealed films were anatase phase with annealing converting it to the rutile phase. The energy bandgap of the titanium dioxide film annealed to 500 °C shows an indirect bandgap energy of 3.50 eV and a direct bandgap energy of 3.95 eV. PACS 81.15.Rs; 81.07.-b; 78.20.-e; 78.30.-j; 78.67.-n; 78.70.ck  相似文献   

19.
Zinc oxide (ZnO) thin films on Si (1 1 1) substrates were deposited by pulsed laser ablation of ZnO target at different oxygen pressures. A pulsed Nd:YAG laser with wavelength of 1064 nm was used as laser source. The deposited thin films have been characterized by X-ray diffraction (XRD), Atomic force microscopy (AFM), and Raman spectroscopy. XRD measurements indicate that the ZnO thin films deposited at the oxygen pressure of 1.3 Pa have the best crystalline quality. AFM results show that the surface roughness of ZnO film increases with the increase of oxygen pressure. The Raman results indicate that oxygen ambient plays an important role in removing defects due to excess zinc.  相似文献   

20.
Vanadium oxide thin films were deposited on ordinary glass substrates by direct current (DC) magnetron sputtering from a vanadium metal target and subsequent oxidation annealing. The deposition and annealing parameters were given in detail. The samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM). The phase transitions of films were observed by measuring their electrical and optical property variations at different temperature. The results indicated that the films fabricated had a semiconductor–metal phase transition temperature of about 30 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号