首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A graph G is κ-ordered Hamiltonian 2≤κ≤n,if for every ordered sequence S of κ distinct vertices of G,there exists a Hamiltonian cycle that encounters S in the given order,In this article,we prove that if G is a graph on n vertices with degree sum of nonadjacent vertices at least n 3κ-9/2,then G is κ-ordered Hamiltonian for κ=3,4,…,[n/19].We also show that the degree sum bound can be reduced to n 2[κ/2]-2 if κ(G)≥3κ-1/2 or δ(G)≥5κ-4.Several known results are generalized.  相似文献   

2.
Let k be an integer. A 2-edge connected graph G is said to be goal-minimally k-elongated (k-GME) if for every edge uvE(G) the inequality d G−uv (x, y) > k holds if and only if {u, v} = {x, y}. In particular, if the integer k is equal to the diameter of graph G, we get the goal-minimally k-diametric (k-GMD) graphs. In this paper we construct some infinite families of GME graphs and explore k-GME and k-GMD properties of cages. This research was supported by the Slovak Scientific Grant Agency VEGA No. 1/0406/09.  相似文献   

3.
  The so-called Kelly conjecture states that every regular tournament on 2k+1 vertices has a decomposition into k-arc-disjoint hamiltonian cycles. In this paper we formulate a generalization of that conjecture, namely we conjecture that every k-arc-strong tournament contains k arc-disjoint spanning strong subdigraphs. We prove several results which support the conjecture:If D = (V, A) is a 2-arc-strong semicomplete digraph then it contains 2 arc-disjoint spanning strong subdigraphs except for one digraph on 4 vertices.Every tournament which has a non-trivial cut (both sides containing at least 2 vertices) with precisely k arcs in one direction contains k arc-disjoint spanning strong subdigraphs. In fact this result holds even for semicomplete digraphs with one exception on 4 vertices.Every k-arc-strong tournament with minimum in- and out-degree at least 37k contains k arc-disjoint spanning subdigraphs H 1, H 2, . . . , H k such that each H i is strongly connected.The last result implies that if T is a 74k-arc-strong tournament with speci.ed not necessarily distinct vertices u 1, u 2, . . . , u k , v 1, v 2, . . . , v k then T contains 2k arc-disjoint branchings where is an in-branching rooted at the vertex u i and is an out-branching rooted at the vertex v i , i=1,2, . . . , k. This solves a conjecture of Bang-Jensen and Gutin [3].We also discuss related problems and conjectures.
Anders YeoEmail:
  相似文献   

4.
We prove that if k is a positive integer and d is a positive integer such that the product of any two distinct elements of the set {k + 1, 4k, 9k + 3, d} increased by 1 is a perfect square, then d = 144k 3 + 192k 2 + 76k + 8.   相似文献   

5.
We introduce and solve a natural geometrical extremal problem. For the set E (n,w) = {x n {0,1} n : x n has w ones } of vertices of weight w in the unit cube of n we determine M (n,k,w) max{|U k n E(n,w)|:U k n is a k-dimensional subspace of n . We also present an extension to multi-sets and explain a connection to a higher dimensional Erds–Moser type problem.  相似文献   

6.
Let n and k(n ≥ k 〉 1) be two non-negative integers.A k-multi-hypertournament on n vertices is a pair(V,A),where V is a set of vertices with |V|=n,and A is a set of k-tuples of vertices,called arcs,such that for any k-subset S of V,A contains at least one(at most k!) of the k! k-tuples whose entries belong to S.The necessary and suffcient conditions for a non-decreasing sequence of non-negative integers to be the out-degree sequence(in-degree sequence) of some k-multi-hypertournament are given.  相似文献   

7.
We consider sufficient conditions for a degree sequence π to be forcibly k-factor graphical. We note that previous work on degrees and factors has focused primarily on finding conditions for a degree sequence to be potentially k-factor graphical. We first give a theorem for π to be forcibly 1-factor graphical and, more generally, forcibly graphical with deficiency at most β ≥ 0. These theorems are equal in strength to Chvátal’s well-known hamiltonian theorem, i.e., the best monotone degree condition for hamiltonicity. We then give an equally strong theorem for π to be forcibly 2-factor graphical. Unfortunately, the number of nonredundant conditions that must be checked increases significantly in moving from k = 1 to k = 2, and we conjecture that the number of nonredundant conditions in a best monotone theorem for a k-factor will increase superpolynomially in k. This suggests the desirability of finding a theorem for π to be forcibly k-factor graphical whose algorithmic complexity grows more slowly. In the final section, we present such a theorem for any k ≥ 2, based on Tutte’s well-known factor theorem. While this theorem is not best monotone, we show that it is nevertheless tight in a precise way, and give examples illustrating this tightness.  相似文献   

8.
The concept of the k-pairable graphs was introduced by Zhibo Chen (On k-pairable graphs, Discrete Mathematics 287 (2004), 11–15) as an extension of hypercubes and graphs with an antipodal isomorphism. In the same paper, Chen also introduced a new graph parameter p(G), called the pair length of a graph G, as the maximum k such that G is k-pairable and p(G) = 0 if G is not k-pairable for any positive integer k. In this paper, we answer the two open questions raised by Chen in the case that the graphs involved are restricted to be trees. That is, we characterize the trees G with p(G) = 1 and prove that p(GH) = p(G) + p(H) when both G and H are trees.  相似文献   

9.
Let H be an atomic monoid. For let denote the set of all with the following property: There exist atoms (irreducible elements) u 1, …, u k , v 1, …, v m H with u 1· … · u k = v 1 · … · v m . We show that for a large class of noetherian domains satisfying some natural finiteness conditions, the sets are almost arithmetical progressions. Suppose that H is a Krull monoid with finite cyclic class group G such that every class contains a prime (this includes the multiplicative monoids of rings of integers of algebraic number fields). We show that, for every , max which settles Problem 38 in [4]. Authors’ addresses: W. Gao, Center for Combinatorics, Nankai University, Tianjin 300071, P.R. China; A. Geroldinger, Institut für Mathematik und Wissenschaftliches Rechnen, Karl-Franzens-Universit?t Graz, Heinrichstra?e 36, 8010 Graz, Austria  相似文献   

10.
An edge e of a k-connected graph G is said to be a removable edge if Ge is still k-connected, where Ge denotes the graph obtained from G by deleting e to get Ge, and for any end vertex of e with degree k − 1 in Ge, say x, delete x, and then add edges between any pair of non-adjacent vertices in N Ge (x). The existence of removable edges of k-connected graphs and some properties of 3-connected graphs and 4-connected graphs have been investigated. In the present paper, we investigate some properties of k-connected graphs and study the distribution of removable edges on a cycle in a k-connected graph (k ≥ 4).  相似文献   

11.
The following results are proved. In Theorem 1, it is stated that there exist both finitely presented and not finitely presented 2-generated nonfree groups which are k-free-like for any k ⩾ 2. In Theorem 2, it is claimed that every nonvirtually cyclic (resp., noncyclic and torsion-free) hyperbolic m-generated group is k-free-like for every k ⩾ m + 1 (resp., k ⩾ m). Finally, Theorem 3 asserts that there exists a 2-generated periodic group G which is k-free-like for every k ⩾ 3. Supported by NSF (grant Nos. DMS 0455881 and DMS-0700811). (A. Yu. Olshanskii, M. V. Sapir) Supported by RFBR project No. 08-01-00573. (A. Yu. Olshanskii) Supported by BSF grant (USA–Israel). (M. V. Sapir) Translated from Algebra i Logika, Vol. 48, No. 2, pp. 245–257, March–April, 2009.  相似文献   

12.
We consider k-th power of upper bound graphs. According to the characterization of upper bound graphs, we obtain a characterization of k-th power of upper bound graphs. That is, for a connected upper bound graph G, Gk is an upper bound graph if and only if for any pair of Ak -simplicial vertices s1, s2 such that , there exists a Gk -simplicial vertex s satisfying the conditions: and . Furthermore we also get some properties on squares of upper bound graphs.AMS Subject Classification: 05C62.  相似文献   

13.
Contraction of an edge e merges its end points into a new single vertex, and each neighbor of one of the end points of e is a neighbor of the new vertex. An edge in a k-connected graph is contractible if its contraction does not result in a graph with lesser connectivity; otherwise the edge is called non-contractible. In this paper, we present results on the structure of contractible edges in k-trees and k-connected partial k-trees. Firstly, we show that an edge e in a k-tree is contractible if and only if e belongs to exactly one (k + 1) clique. We use this characterization to show that the graph formed by contractible edges is a 2-connected graph. We also show that there are at least |V(G)| + k − 2 contractible edges in a k-tree. Secondly, we show that if an edge e in a partial k-tree is contractible then e is contractible in any k-tree which contains the partial k-tree as an edge subgraph. We also construct a class of contraction critical 2k-connected partial 2k-trees.  相似文献   

14.
An interval k-graph is the intersection graph of a family of intervals of the real line partitioned into k classes with vertices adjacent if and only if their corresponding intervals intersect and belong to different classes. In this paper we study the cocomparability interval k-graphs; that is, the interval k-graphs whose complements have a transitive orientation and are therefore the incomparability graphs of strict partial orders. For brevity we call these orders interval k-orders. We characterize the kind of interval representations a cocomparability interval k-graph must have, and identify the structure that guarantees an order is an interval k-order. The case k =?2 is peculiar: cocomparability interval 2-graphs (equivalently proper- or unit-interval bigraphs, bipartite permutation graphs, and complements of proper circular-arc graphs to name a few) have been characterized in many ways, but we show that analogous characterizations do not hold if k >?2. We characterize the cocomparability interval 3-graphs via one forbidden subgraph and hence interval 3-orders via one forbidden suborder.  相似文献   

15.
Scale free graphs have attracted attention as their non-uniform structure that can be used as a model for many social networks including the WWW and the Internet. In this paper, we propose a simple random model for generating scale free k-trees. For any fixed integer k, a k-tree consists of a generalized tree parameterized by k, and is one of the basic notions in the area of graph minors. Our model is quite simple and natural; it first picks a maximal clique of size k + 1 uniformly at random, it then picks k vertices in the clique uniformly at random, and adds a new vertex incident to the k vertices. That is, the model only makes uniform random choices twice per vertex. Then (asymptotically) the distribution of vertex degree in the resultant k-tree follows a power law with exponent 2 + 1/k, the k-tree has a large clustering coefficient, and the diameter is small. Moreover, our experimental results indicate that the resultant k-trees have extremely small diameter, proportional to o(log n), where n is the number of vertices in the k-tree, and the o(1) term is a function of k.  相似文献   

16.
In (k, n) visual cryptographic schemes (VCS), a secret image is encrypted into n pages of cipher text, each printed on a transparency sheet, which are distributed among n participants. The image can be visually decoded if any k(≥2) of these sheets are stacked on top of one another, while this is not possible by stacking any k − 1 or fewer sheets. We employ a Kronecker algebra to obtain necessary and sufficient conditions for the existence of a (k, n) VCS with a prior specification of relative contrasts that quantify the clarity of the recovered image. The connection of these conditions with an L 1-norm formulation as well as a convenient linear programming formulation is explored. These are employed to settle certain conjectures on contrast optimal VCS for the cases k = 4 and 5. Furthermore, for k = 3, we show how block designs can be used to construct VCS which achieve optimality with respect to the average and minimum relative contrasts but require much smaller pixel expansions than the existing ones.  相似文献   

17.
Every k-interval Boolean function f can be represented by at most k intervals of integers such that vector x is a truepoint of f if and only if the integer represented by x belongs to one of these k (disjoint) intervals. Since the correspondence of Boolean vectors and integers depends on the order of bits an interval representation is also specified with respect to an order of variables of the represented function. Interval representation can be useful as an efficient representation for special classes of Boolean functions which can be represented by a small number of intervals. In this paper we study inclusion relations between the classes of threshold and k-interval Boolean functions. We show that positive 2-interval functions constitute a (proper) subclass of positive threshold functions and that such inclusion does not hold for any k>2. We also prove that threshold functions do not constitute a subclass of k-interval functions, for any k.  相似文献   

18.
Recently the first author presented exact formulas for the number of 2 n -periodic binary sequences with given 1-error linear complexity, and an exact formula for the expected 1-error linear complexity and upper and lower bounds for the expected k-error linear complexity, k ≥ 2, of a random 2 n -periodic binary sequence. A crucial role for the analysis played the Chan–Games algorithm. We use a more sophisticated generalization of the Chan–Games algorithm by Ding et al. to obtain exact formulas for the counting function and the expected value for the 1-error linear complexity for p n -periodic sequences over prime. Additionally we discuss the calculation of lower and upper bounds on the k-error linear complexity of p n -periodic sequences over .   相似文献   

19.
This paper contains three parts where each part triggered and motivated the subsequent one. In the first part (Proper Secrets) we study the Shamir’s “k-out-of-n” threshold secret sharing scheme. In that scheme, the dealer generates a random polynomial of degree k−1 whose free coefficient is the secret and the private shares are point values of that polynomial. We show that the secret may, equivalently, be chosen as any other point value of the polynomial (including the point at infinity), but, on the other hand, setting the secret to be any other linear combination of the polynomial coefficients may result in an imperfect scheme. In the second part ((t, k)-bases) we define, for every pair of integers t and k such that 1 ≤ t ≤ k−1, the concepts of (t, k)-spanning sets, (t, k)-independent sets and (t, k)-bases as generalizations of the usual concepts of spanning sets, independent sets and bases in a finite-dimensional vector space. We study the relations between those notions and derive upper and lower bounds for the size of such sets. In the third part (Linear Codes) we show the relations between those notions and linear codes. Our main notion of a (t, k)-base bridges between two well-known structures: (1, k)-bases are just projective geometries, while (k−1, k)-bases correspond to maximal MDS-codes. We show how the properties of (t, k)-independence and (t, k)-spanning relate to the notions of minimum distance and covering radius of linear codes and how our results regarding the size of such sets relate to known bounds in coding theory. We conclude by comparing between the notions that we introduce here and some well known objects from projective geometry.   相似文献   

20.
We prove the estimate for the number Ek(N) of k-tuples (n + a1,..., n + ak) of primes not exceeding N, for k of size c1 log N and N sufficiently large. A bound of this strength was previously known in the special case < only, (Vaughan, 1973). For general ai this is an improvement upon the work of Hofmann and Wolke (1996). The number of prime tuples of this size has considerable oscillations, when varying the prime pattern. Received: 20 December 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号