首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrochemical behaviour of pyridoxine hydrochloride (pyridoxine HCl) at the plain carbon paste electrode and the electrode modified with oxa crown ether has been studied using voltammetric and impedance measurements. The macrocycles used as modifiers were 18-crown-6, dibenzo-18-crown-6 (DB18C6), dicyclohexano-18-crown-6 and dibenzo-24-crown-8, out of which DB18C6 gave better response for pyridoxine HCl. Tris buffer (pH 10.3) was chosen as an appropriate medium among the several supporting electrolytes of varying pH studied. The characterization of the DB18C6-modified electrode (CME-DB18C6) using kinetic parameters such as number of electrons (n) and electron transfer coefficient (α) is studied by cyclic voltammetry. Electrochemical impedance spectroscopic measurements obtained confirm the current enhancement over the modified electrode. Analytical applications of this electrode have been studied for the determination of pyridoxine HCl. A sensitive linear working range of 0.6 to 100 μg cm−3 with a detection limit of 0.4 μg cm−3 by differential pulse voltammetry was observed for pyridoxine HCl on CME-DB18C6. However, on decreasing the scan rate to 5 mV s−1, the detection limit lowered to 0.2 μg cm−3. Interference from some vitamins like thiamine hydrochloride, riboflavin, nicotinamide, para-aminobenzoic acid, cyanocobalamin, folic acid and d-biotin and amino acid l-tryptophan was studied, and simultaneously, riboflavin, thiamine hydrochloride and pyridoxine HCl were determined over the modified electrode, CME-DB18C6. The modified electrode is successfully used for the determination of pyridoxine HCl in multivitamin pharmaceutical preparations.  相似文献   

2.
The complexation behavior of nicotinamide with macrocyclic polyethers viz, 15-crown-5, benzo-15-crown-5, 18-crown-6, dicyclohexano-18-crown-6, dibenzo-18-crown-6, dibenzo-24-crown-8, 1,4,7,10,13,16-hexathiacyclooctadecane, monoaza-15-crown-5, 1,4,10-trioxa-7,13-diaza-cyclopentadecane, 5,6,14,15-dibenzo-1,4-dioxa-8,12-diazacyclopentadecane, 7,16-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane, 1,4,7-tritosyl-1,4,7-triazacyclononane, 1,4,7,10-tetratosyl-1,4,7,10-tetraazacyclododecane and 1,4,8,11-tetraazacyclooctadecane has been studied in dimethylsulphoxide (DMSO) and 90% DMSO + water using differential pulse polarography and complexation constants have been reported. Nicotinamide forms stable complexes with six-membered coronand rings of the crown ethers. The nature of the atoms (oxygen, sulfur and nitrogen) in the coronand ring is observed to affect the stability of the complex. The stoichiometry and stability constants of the complexes were determined by monitoring the shifts in peak potentials of the polarograms of nicotinamide against the ligand concentration. The Gibbs free energy change turns out to be negative at 25°C, which indicates the spontaneity of the binding of nicotinamide with crown ethers. The mole ratio of nicotinamide to the macrocyclic compound was also determined and it was found that the complexes were of 1:1 type with respect to crown ethers. The tendency of nicotinamide to form complexes with macrocycles is found to be greater in DMSO than in DMSO + water.  相似文献   

3.
The preparation and electrochemical characterization of a carbon paste electrode modified with the N,N-ethylene-bis(salicylideneiminato)oxovanadium(IV) complex [VO(Salen)] as well as its behavior in relation to the oxidation of pyridoxine (Vitamin B6) are described. The electrochemical behavior of the modified electrode and the electrooxidation of pyridoxine were investigated using cyclic voltammetry. The best voltammetric response was obtained for an electrode composition of 15% (m/m) [VO(Salen)] in the paste, KCl solution of pH 5.5-8.0 and scan rate of 25 mV s−1. A sensitive linear voltammetric response for pyridoxine was obtained in the concentration range of 4.5×10−4 to 3.3×10−3 mol l−1 with a slope of 42.5 μA mmol−1 l, and a detection limit (3σ/slope) of 3.7×10−5 mol l−1 using linear sweep voltammetry. Among several compounds tested only Vitamin B1 seems to interfere in the analyte signal. The concentrations of pyridoxine in pharmaceutical formulations using the proposed electrode and an official spectrophotometric method based in the reaction with N,N-diethyl-p-phenylenediamine are in agreement at the 95% confidence level and within an acceptable range of error.  相似文献   

4.
An improved method was developed for simultaneous determination of the fortified forms of thiamine (B1), riboflavin (B2), nicotinamide and nicotinic acid (B3), pantothenic acid (B5), pyridoxine (B6), biotin (B7), and folic acid (B9) in infant formulas and related nutritionals. The method employed a simple, effective, and rapid sample preparation followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). It improved upon previous methodologies by offering facile and rugged sample preparation with improved chromatographic conditions, which culminated in a highly accurate and precise method for water-soluble vitamin determination in a wide range of formulas. The method was validated over six days in ten unique matrices with two analysts and on instruments in two different labs. Intermediate precision averaged 3.4 ± 2.6% relative standard deviation and over-spike recovery averaged 100.2 ± 2.4% (n = 160). Due to refinements in sample preparation, the method had high sample throughput capacity.  相似文献   

5.
A flow-through optosensor has been prepared for the sensitive and selective determination of pyridoxine (vitamin B6) in aqueous solutions. The sensor was developed in conjunction with a monochannel flow-injection analysis system with fluorimetric detection using Sephadex SP-C25 resin as an active sorbent substrate. This method of determination is carried out without any derivatization. The wavelengths of excitation and emission were 295 and 385 nm, respectively. When a HCl (10–3 mol L–1) / NaCl (3 × 10–2 mol L–1) solution is used as carrier solution, the sensor responds linearly in the measuring range of 5–200, 10–400 and 50–1800 ng mL–1 with detection limits of 0.33, 0.67, and 5.70 ng mL–1 for 2000, 1000 and 200 μL of sample volume, respectively. The relative standard deviation for ten independent determinations is less than 0.75% for 0.2 and 1.0 mL of sample volumes used, and 1.31% for 2.0 mL of sample volume used. The method was satisfactorily applied to the determination of vitamin B6 in pharmaceutical preparations. Received: 4 June 1998 / Revised: 16 July 1998 / Accepted: 6 August 1998  相似文献   

6.
In this study the application of home-made unmodified (GC) and bulk modified boron doped glassy carbon (GCB) electrodes for the voltammetric determination of the linuron was investigated. The electrodes were synthesized with a moderate temperature treatment (1000°C). Obtained results were compared with the electrochemical determination of the linuron using a commercial glassy carbon electrode (GC-Metrohm). The peak potential (E p ) of linuron oxidation in 0.1 mol dm−3 H2SO4 as electrolyte was similar for all applied electrodes: 1.31, 1.34 and 1.28 V for GCB, GC and GC-Metrohm electrodes, respectively. Potential of linuron oxidation and current density depend on the pH of supporting electrolyte. Applying GCB and GC-Metrohm electrodes the most intensive electrochemical response for linuron was obtained in strongly acidic solution (0.1 mol dm−3 H2SO4). Applying the boron doped glassy carbon electrode the broadest linear range (0.005–0.1 μmol cm−3) for the linuron determination was obtained. The results of voltammetric determination of the linuron in spiked water samples showed good correlation between added and found amounts of linuron and also are in good agreement with the results obtained by HPLC-UV method. This appears to be the first application of a boron doped glassy carbon electrode for voltammetric determination of the environmental important compounds.   相似文献   

7.
The surface of a gold disk electrode, for the first time, was modified with a self-assembled monolayer of a synthesized compound, ethyl [(methythio)carbonothioyl] glycinate (ECTG), for construction of an electrode sensitive to riboflavin (vitamin B2). The electrochemical properties of the monolayer assembled on the gold disk were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Under the optimized conditions, the voltammetric peak currents resulting from vitamin B2 (VB2) species were linear for VB2 concentrations in the range from 10–6 to 10–2 M. The effect of pH, type of buffer solution and scan rate on the response of the modified electrode was studied. The constructed electrochemical sensor responses very well to VB2 in the presence of most common vitamins. Finally, the performance of the Au–ECTG modified electrode was successfully tested for electrochemical detection of VB2 in a pharmaceutical sample.  相似文献   

8.
Composite electrodes were prepared from chemical vapor deposition grown carbon nanofibers consisting predominantly of ca. 100 nm diameter fibers. A hydrophobic sol–gel matrix based on a methyl-trimethoxysilane precursor was employed and composites formed with carbon nanofiber or carbon nanofiber—carbon particle mixtures (carbon ceramic electrode). Scanning electron microscopy images and electrochemical measurements show that the composite materials exhibit high surface area with some degree of electrolyte solution penetration into the electrode. These electrodes were modified with redox probe solution in 2-nitrophenyloctylether. A second type of composite electrode was prepared by simple pasting of carbon nanofibers and the same solution (carbon paste electrode). For both types of electrodes it is shown that high surface area carbon nanofibers dominate the electrode process and enhance voltammetric currents for the transfer of anions at liquid|liquid phase boundaries presumably by extending the triple-phase boundary. Both anion insertion and cation expulsion processes were observed driven by the electro-oxidation of decamethylferrocene within the organic phase. A stronger current response is observed for the more hydrophobic anions like ClO4 or PF6 when compared to that for the more hydrophilic anions like F and SO42−. Presented at the 4th Baltic Conference on Electrochemistry, Greifswald, March 13–16, 2005  相似文献   

9.
Hydrophilic interaction liquid‐chromatography (HILIC) in conjunction with diode array detection has been applied for the separation of selected‐water‐soluble vitamins using an end‐capped HILIC‐diol column. Vitamins with significant biological importance, such as thiamine (B1), riboflavin (B2), nicotinic acid (B3), nicotinamide (B3), pyridoxine (B6), folic acid (B9), cyanocobalamin (B12) and ascorbic acid (vitamin C) were simultaneously separated. Chromatographic conditions including type and percentage of organic modifier in the mobile phase, pH, type and concentration of buffer salt and flow rate were investigated. ACN was shown to offer superior separation for the compounds tested as compared to methanol, isopropanol and THF. Isocratic separation and analysis were achieved for six vitamins (B1, B2, nicotinic acid/nicotinamide, B6 and C) at ACN–H2O 90:10, containing ammonium acetate 10 mM, triethylamine 20 mM, pH 5.0, using a flow rate of 0.8 mL/min, while a gradient was necessary to resolve a mixture of all eight water‐soluble vitamins. The HILIC method was validated and successfully applied to the analysis of a pharmaceutical formulation and an energy drink negating the need for time consuming clean‐up steps.  相似文献   

10.
A novel, simple, and effective ion‐pair cloud‐point extraction coupled with a gradient high‐performance liquid chromatography method was developed for determination of thiamine (vitamin B1), niacinamide (vitamin B3), pyridoxine (vitamin B6), and riboflavin (vitamin B2) in plasma and urine samples. The extraction and separation of vitamins were achieved based on an ion‐pair formation approach between these ionizable analytes and 1‐heptanesulfonic acid sodium salt as an ion‐pairing agent. Influential variables on the ion‐pair cloud‐point extraction efficiency, such as the ion‐pairing agent concentration, ionic strength, pH, volume of Triton X‐100, extraction temperature, and incubation time have been fully evaluated and optimized. Water‐soluble vitamins were successfully extracted by 1‐heptanesulfonic acid sodium salt (0.2% w/v) as ion‐pairing agent with Triton X‐100 (4% w/v) as surfactant phase at 50°C for 10 min. The calibration curves showed good linearity (r2 > 0.9916) and precision in the concentration ranges of 1‐50 μg/mL for thiamine and niacinamide, 5–100 μg/mL for pyridoxine, and 0.5–20 μg/mL for riboflavin. The recoveries were in the range of 78.0–88.0% with relative standard deviations ranging from 6.2 to 8.2%.  相似文献   

11.
Dinaphthyl macrocyclic polyethers were synthesized and used as neutral carriers for preparing primary amine drug sensitive PVC membrane electrodes. Contrary to the ion-associate based electrodes, which show an excellent potentiometric response to quaternary ammonium ions and the like, but a very poor response to primary amines, the macrocyclic polyether-based electrodes showed potentiometric response characteristics with primary amines preferred. Dinaphthyl macrocyclic polyether-based electrodes are superior to those based on common macrocyclic polyethers for their potentiometric selectivity coefficients much lower than those of the latter. The main characteristics of a dinaphthyl-20-crown-6-based benzyl amine sensitive electrode are as follows: linear response range, 4.2 × 10–5 – 1.0 ×10–1 M; slope, 51.3 mV/decade; and detection limit, 4.6 × 10–6 M. A mexiletine sensitive electrode was prepared using dinaphthyl-23-crown-7 with following performance features: linear response range, 2.0 × 10–5 – 1.0 ×10–1 M; slope, 52.1mV/decade; and detection limit, 5.0 × 10–6 M.  相似文献   

12.
A simple procedure was developed to prepare a glassy carbon electrode modified with carbon nanotubes and Ruthenium (III) complexes. First, 25 μl of dimethyl sulfoxide–carbon nanotubes solutions (0.4 mg/ml) was cast on the surface of the glassy carbon electrode and dried in air to form a carbon nanotube film at the electrode surface. Then, the glassy carbon/carbon nanotube-modified electrode was immersed into a Ruthenium (III) complex solution (direct deposition) for a short period of time (10–20 s for multiwalled carbon nanotubes and 20–40 s for single-walled carbon nanotubes). The cyclic voltammograms of the modified electrode in aqueous solution shows a pair of well-defined, stable, and nearly reversible redox couple, Ru(III)/Ru(II), with surface-confined characteristics. The attractive mechanical and electrical characteristics of carbon nanostructures and unique properties and reactivity of Ru complexes are combined. The transfer coefficient (α), heterogeneous electron transfer rate constants (k s), and surface concentrations (Γ) for the glassy carbon/single-walled carbon nanotubes/Ru(III) complex-, glassy carbon/multiwalled carbon nanotubes/Ru(III) complex-, and glassy carbon/Ru(III) complex-modified electrodes were calculated using the cyclic voltammetry technique. The modified electrodes showed excellent catalytic activity, fast response time, and high sensitivity toward the reduction of nicotinamide adenine dinucleotide in phosphate buffer solutions at a pH range of 4–8. The catalytic cathodic current depends on the nicotinamide adenine dinucleotide concentration. In the presence of alcohol dehydrogenase, the modified electrode exhibited a response to addition of acetaldehyde. Therefore, the main product of nicotinamide adenine dinucleotide electroreduction at the Ru(III) complex/carbon nanotube-modified electrode was the enzymatically active NADH. The purposed sensor can be used for acetaldehyde determination.  相似文献   

13.
A new method is described for the determination of ammonium in aqueous solutions with electrodes modified by Prussian blue (PB). The specific voltammetric response of PB-modified electrodes to ammonium ions is used for their analytical determination. In the presence of ammonium ions, a concentration-dependent inhibition of the low-spin iron(II/III) system of PB occurs. Only thallium and rubidium ions cause similar inhibition. A useful electrochemical determination method is thus available for detecting ammonium ions in the presence of frequently interfering potassium and sodium ions. Paraffin-impregnated graphite electrodes modified with a mechanically transferred PB layer and bulk-modified PB-composite electrodes are studied. The method is applicable within a concentration range which extends from 4 × 10−5 mol/l to 10−2 mol/l NH4 +. The composite electrode is used in an electrochemical flow-through system in conjunction with the Kjeldahl method. Received: 21 April 1997 / Accepted: 28 May 1997  相似文献   

14.
A cathodic differential pulse voltammetric determination of colchicine was validated using a glassy carbon electrode in HClO4/H3PO4 0.01 M. Colchicine gives an irreversible, diffusion-controlled peak at −862 mV vs. Ag/AgCl reference electrode. The cathodic peak is strongly influenced by a more alkaline environment with a shift towards more negative potentials. Method optimization was carried out in parallel for three types of electrodes (glassy carbon, mercury film and bismuth film coated glassy carbon). The cathodic peak current is higher using film-coated electrodes, but shows poorer intra-day reproducibility and a longer analysis time due to film renewal. Thus, a bare glassy carbon electrode was used to determine colchicine in the concentration range of 2.4 − 50 μg mL−1 (R 2 = 0.9998, n = 5), with a calculated detection limit of 0.80 μg mL−1. The proposed method was characterized according to ICH Harmonized Tripartite Guidance Q2(R1) by validation parameters (selectivity, linearity, accuracy, fidelity, limit of detection, limit of quantification) and it was successfully applied for the determination of colchicine from tablets, without the interference of the excipients. The method’s performances were evaluated and compared with both a known polarographic method and the official quantitative spectrophotometric determination from the Romanian Pharmacopoeia, Xth edition, respectively.   相似文献   

15.
The electrocatalytic activity of a Prussian blue (PB) film on the aluminum electrode by taking advantage of the metallic palladium characteristic as an electron-transfer bridge (PB/Pd–Al) for electrooxidation of 2-methyl-3-hydroxy-4,5-bis (hydroxyl–methyl) pyridine (pyridoxine) is described. The catalytic activity of PB was explored in terms of FeIII [FeIII (CN)6]/FeIII [FeII (CN)6]1− system. The best mediated oxidation of pyridoxine (PN) on the PB/Pd–Al-modified electrode was achieved in 0.5 M KNO3 + 0.2 M potassium acetate of pH 6 at scan rate of 20 mV s−1. The mechanism and kinetics of the catalytic oxidation reaction of PN were monitored by cyclic voltammetry and chronoamperometry. The results were explained using the theory of electrocatalytic reactions at chemically modified electrodes. The charge transfer-rate limiting reaction step is found to be a one-electron abstraction, whereas a two-electron charge transfer reaction is the overall oxidation reaction of PN by forming pyridoxal. The value of α, k, and D are 0.5, 1.2 × 102 M−1 s−1, and 1.4 × 10−5 cm2 s−1, respectively. Further examination of the modified electrodes shows that the modifying layers (PB) on the Pd–Al substrate have reproducible behavior and a high level of stability after posing it in the electrolyte or Pyridoxine solutions for a long time.  相似文献   

16.
The potential application of ordered mesoporous carbon (OMC)-modified glassy carbon electrode (OMC/GCE) in electrochemistry as a novel electrode material was investigated. X-ray diffraction, transmission electron micrographs, and cyclic voltammetry were used to characterize the structure and electrochemical behaviors of this material. Compared to GC electrode, the peak currents of potassium ferricyanide (K3[Fe(CN)6]) increase and the peak potential separation (ΔE p) decreases at the OMC/GC electrode. These phenomena suggest that OMC-modified GC electrode possesses larger electrode area and faster electron transfer rate, as compared with bare GC electrode. Furthermore, riboflavin was detected using OMC/GC electrode in aqueous solutions. The results showed that, under an optimum condition (pH 7.0), the OMC/GC electrode exhibited excellent response performance to riboflavin in the concentration range of 4.0 × 10−7 to 1.0 × 10−6 M with a high sensitivity of 769 μA mM−1. The detection limit was down to around 2 × 10−8 M. With good stability and reproducibility, the present OMC/GC electrode was applied in the determination of vitamin B2 content in vitamin tablets, and satisfactory results were obtained.  相似文献   

17.
Fosamprenavir is a pro-drug of the antiretroviral protease inhibitor amprenavir and is oxidizable at solid electrodes. The anodic oxidation behavior of fosamprenavir was investigated using cyclic and linear sweep voltammetry at boron-doped diamond and glassy carbon electrodes. In cyclic voltammetry, depending on pH values, fosamprenavir showed one sharp irreversible oxidation peak or wave depending on the working electrode. The mechanism of the oxidation process was discussed. The voltammetric study of some model compounds allowed elucidation of the possible oxidation mechanism of fosamprenavir. The aim of this study was to determine fosamprenavir levels in pharmaceutical formulations and biological samples by means of electrochemical methods. Using the sharp oxidation response, two voltammetric methods were described for the determination of fosamprenavir by differential pulse and square-wave voltammetry at the boron-doped diamond and glassy carbon electrodes. These two voltammetric techniques are 0.1 M H2SO4 and phosphate buffer at pH 2.0 which allow quantitation over a 4 × 10−6 to 8 × 10−5 M range using boron-doped diamond and a 1 × 10−5 to 1 × 10−4 M range using glassy carbon electrodes, respectively, in supporting electrolyte. All necessary validation parameters were investigated and calculated. These methods were successfully applied for the analysis of fosamprenavir pharmaceutical dosage forms, human serum and urine samples. The standard addition method was used in biological media using boron-doped diamond electrode. No electroactive interferences from the tablet excipients or endogenous substances from biological material were found. The results were statistically compared with those obtained through an established HPLC-UV technique; no significant differences were found between the voltammetric and HPLC methods.  相似文献   

18.
The preparation and study of electrochemical properties of a graphite screen-printed electrode (SPE) modified with the GO/Fe3O4@SiO2 (GO is graphene oxide) nanocomposites are described. The morphologies of the GO/Fe3O4@SiO2 nanocomposites were examined by scanning electron microscopy. The electrochemical oxidation of vitamin B6 (pyridoxine) on SPE modified with the GO/Fe3O4@SiO2 nanocomposite was investigated by cyclic voltammetry, differential pulse voltammetry, and chronoamperometry. Under optimum conditions (pH 7.0), the vitamin B6 oxidation at the surface of the modified SPE occurs at a potential about 190 mV less positive than that at the unmodified SPE. A linear voltammetric response for vitamin B6 was obtained in the concentration range 1.0?10 6—9.0?10 4 mol L–1 with a detection limit of 5.2?10 7 mol L–1 using differential pulse voltammetry. The developed sensor was also successfully applied for determination of trace level of vitamin B6 in both the standard vitamin B6 sample and biological samples (urine).  相似文献   

19.
The purpose of this study was to optimize chromatographic and detection conditions for the simultaneous determination of water-soluble vitamins in multi-vitamin dietary supplements using a single chromatographic run. An approach using liquid chromatography with diode array and/or mass spectrometry for quantitation of seven B-complex vitamins [thiamine (B1), riboflavin (B2), nicotinamide (B3), pyridoxine (B6) pyridoxine, biotin, pantothenic acid, and folic acid] in multi-vitamin/multi-mineral daily supplements is described. This approach utilizes a reversed phase C18 column (4 μm; i.d.: 250×2.0 mm) with a gradient mobile elution profile, performed at a flow rate of 0.25 ml/min. After a 5-min isocratic elution at 100% A (0.1% formic acid in water), a linear gradient to 50% A and 50% B (0.1% formic acid in acetonitrile) at 15 min and then to 5% A and 95% B at 17 min was employed. Detection was performed with a photodiode array detector (DAD) in sequence with a triple-quad mass spectrometer in the multiple reaction mode (MS-MRM). Although good chromatographic separation of ascorbic acid was also obtained in extracts from multi-vitamin/multi-mineral supplements, the ascorbic acid could not be quantified properly due to rapid oxidation catalyzed by the minerals. This method was initially applied to determine water-soluble vitamins in representative multi-vitamin/multi-mineral tablets following the extraction of ground samples with a phosphate buffer (10 mM, pH 2.5). For multi-vitamin supplement tablets, this approach does not require any sample clean-up/pre-concentration steps except for centrifugation and filtration of the extract.   相似文献   

20.
The voltammetric behaviour and amperometric detection of tetracycline (TC) antibiotics at multi-wall carbon nanotube modified glassy carbon electrodes (MWCNT-GCE) are reported. Cyclic voltammograms of TCs showed enhanced oxidation responses at the MWCNT-GCE with respect to the bare GCE, attributable to the increased active electrode surface area. Hydrodynamic voltammograms obtained by flow-injection with amperometric detection at the MWCNT-GCE led us to select a potential value E det = +1.20 V. The repeatability of the amperometric responses was much better than that achieved with bare GCE (RSD ranged from 7 to 12%), with RSD values for i p of around 3%, thus demonstrating the antifouling capability of MWCNT modified electrodes. An HPLC method with amperometric electrochemical detection (ED) at the MWCNT-GCE was developed for tetracycline, oxytetracycline (OTC), chlortetracycline and doxycycline (DC). A mobile phase consisting of 18:82 acetonitrile/0.05 mol L−1 phosphate buffer of pH 2.5 was selected. The limits of detection ranged from 0.09 μmol L−1 for OTC to 0.44 μmol L−1 for DC. The possibility to carry out multiresidue analysis is demonstrated. The HPLC-ED/MWCNT-GCE method was applied to the analysis of fish farm pool water and underground well water samples spiked with the four TCs at 2.0 × 10−7 mol L−1. Solid-phase extraction was accomplished for the preconcentration of the analytes and clean-up of the samples. Recoveries ranged from 87 ± 6 to 99 ± 3%. Under preconcentration conditions, limits of detection in the water samples were between 0.50 and 3.10 ng mL−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号