首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The characteristics of the sol–gel matrix embedding Ag nanoparticles functionalized with 25,27‐dimercaptoacetic acid‐26,28‐dihydroxy‐4‐tert‐butylcalix[4]arene (DMCX) suitable for the in situ detection of polycyclic aromatic hydrocarbons (PAHs) in seawater is presented. The DMCX‐functionalized silver nanoparticles were produced by the thermal reduction method in xerogel film. The silver colloid blocks were formed in the sol–gel matrix, with a diameter ranging from 50 to 120 nm. DMCX forming the monolayer on the silver nanoparticle surface contributes to the surface‐enhanced Raman scattering (SERS) activity due to the aggregation of silver nanoparticles and the preconcentration of PAH molecules within the zone of electromagnetic enhancement. When selected, PAH molecules e.g. pyrene and naphthalene were adsorbed onto the SERS substrate; Raman band positions of PAH were slightly shifted. A calibration procedure reveals that this type of SERS substrate has a limit of detection of 3 × 10−10 mol/l for pyrene and 13 × 10−9 mol/l for naphthalene in artificial seawater. The Raman signal response on a pyrene concentration change in artificial seawater was evaluated using a 671‐nm Raman setup with a flow‐through cell. This type of SERS substrate will be suitable for the in situ trace detection of pollutant chemicals in seawater. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Nanoporous thin films with silver nanoparticles were synthesized with a bottom–up approach, and its potential as effective surface‐enhanced Raman scattering (SERS) substrates was demonstrated. The use of mesoporous titania films as substrates allowed to control the growth of nanoparticles on the film surface. Atomic force microscopy measurements, Ultraviolet‐visible and X‐ray diffraction analysis confirmed the photoreduction of Ag+ to Ag0 with the formation of nanoparticles with crystallite dimensions of 32 to 36 nm. The new substrates allowed the detection of two analytes (rhodamine B isothiocyanate and cytochrome c), present in solutions at very low concentrations, highlighting their potential in SERS sensing. Reproducibility, homogeneity, enhancement factor of the substrate, consistency of results and detection limits were also assessed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
To increase the sensitivity in surface‐enhanced Raman scattering (SERS) measurements, the high surface area of zinc oxide nanowires (ZnO NWs) was used. ZnO NWs on silicon substrates were prepared and used as substrates for further growth of silver nanoparticles (AgNPs). Ultraviolet (UV) irradiation was used to reduce silver ions to AgNPs on the ZnO wires. With proper growth conditions for both ZnO NWs and AgNPs, the substrates exhibit SERS enhancement factors greater than 106. To understand the influences of the morphologies of the ZnO NWs on the growth of AgNPs, the growing time and temperature were varied. The concentration of silver nitrate and irradiation time of UV radiation were also varied. The resulting AgNPs were probed with para‐nitrothiophenol to quantify the SERS enhancements obtained from the varying conditions. The results indicate that ZnO NWs could be grown at temperatures higher than 490 °C and higher growth temperatures result in smaller diameter of the formed ZnO NWs. Also, the morphologies of ZnO NWs did not significantly alter the SERS signals. The concentration of silver nitrate affects the SERS signals significantly and the optimal concentration was found to be in the range of 10–20 mM. With irradiation times longer than 90 s, the resulting AgNPs showed similar SERS intensities. With optimized conditions, the AgNPs/ZnO substrates are highly suitable for SERS measurements with a typical enhancement factor of higher than 106. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Using sodium borohydride as the reducing agent and polyvinyl pyrrolidone (PVP, MW = 10 000) as the stabilizer, we obtained silver nanoparticles of various diameters (8–78 nm) from silver nitrate aqueous solutions in the concentration range from 0.001 to 0.1 M. The surface‐enhanced Raman scattering (SERS) from benzoic acid's ring‐breathing mode at 1003 cm−1 was detected from its dilute solutions (∼10−2 M) doped with these silver nanoparticles under 488‐nm laser excitation. The observed size dependences of SERS intensities fit quite well with those calculated by Schatz's theoretical model for spherical silver nanoparticles. The only exception occurred with the smallest particles (8 nm), possibly due to the failure of Maxwell's electromagnetic theory used in this model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
In this article, a novel technique for the fabrication of surface enhanced Raman scattering (SERS) active silver clusters on glassy carbon (GC) has been proposed. It was found that silver clusters could be formed on a layer of positively charged poly(diallyldimethylammonium) (PDDA) anchored to a carbon surface by 4‐aminobenzoic acid when a drop containing silver nanoparticles was deposited on it. The characteristics of the obtained silver clusters have been investigated by atomic force microscopy (AFM), SERS and an SERS‐based Raman mapping technique in the form of line scanning. The AFM image shows that the silver clusters consist of several silver nanoparticles and the size of the clusters is in the range 80–100 nm. The SERS spectra of different concentrations of rhodamine 6G (R6G) on the silver clusters were obtained and compared with those from a silver colloid. The apparent enhancement factor (AEF) was estimated to be as large as 3.1 × 104 relative to silver colloid, which might have resulted from the presence of ‘hot‐spots’ at the silver clusters, providing a highly localized electromagnetic field for the large enhancement of the SERS spectra of R6G. The minimum electromagnetic enhancement factor (EEF) is estimated to be 5.4 × 107 by comparison with the SERS spectra of R6G on the silver clusters and on the bare GC surface. SERS‐based Raman mapping technique in the form of line scanning further illustrates the good SERS activity and reproducibility on the silver clusters. Finally, 4‐mercaptopyridine (4‐Mpy) was chosen as an analyte and the lowest detected concentration was investigated by the SERS‐active silver clusters. A concentration of 1.6 × 10−10 M 4‐Mpy could be detected with the SERS‐active silver clusters, showing the great potential of the technique in practical applications of microanalysis with high sensitivity. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
A controllable roughened silver surface with high surface‐enhanced Raman scattering (SERS) activity and high reproducibility has been developed in this study. This silver surface was prepared by silver nucleation in polyelectrolyte multilayers (PEMs) and silver‐enlarged growth. First, the small Ag nuclei were synthesized by NaBH4 in situ reduction of Ag ions on a surface of PEMs. Then the small Ag nuclei formed were effectively enlarged by using a mixture of commercially available reagents named Li Silver . The optical properties and morphologies of the silver substrates have been investigated by ultraviolet–visible (UV–vis) spectroscopy and atomic force microscopy (AFM). The UV–vis and AFM results revealed that the small Ag nuclei separately appeared on the PEMs after NaBH4 in situ reduction. The size of the enlarged Ag nanoparticles can be easily controlled with the immersing cycle in Li Silver. 4‐Mercaptopyridine (4‐MPY) and Rhodamine 6G (R6G) have been used as Raman probes to evaluate the properties of the new SERS substrates. It has been found that the enhancement factor of R6G reached ∼109 after treatment in Li Silver. Reproducibility has been investigated using the SERS signal intensity at 1094 cm−1 of 4‐MPY. Signals collected over multiple spots within the same substrate resulted in a relative standard deviation (RSD) of 6.38%, while an RSD of 10.33% was measured in signals collected from different substrates. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Interest in the synthesis of hybrid substrates for surface‐enhanced Raman scattering (SERS) has surged recently. Hereof, in the present work, a hybrid SERS substrate CuO : Mn/Ag heterojunction has been synthesised. To accomplish this, the nanostructred Ag island film and CuO : Mn nanoparticles are synthesised by vacuum thermal evaporation method and sol–gel method respectively, and thereafter, a heterojunction between the CuO : Mn and Ag is fabricated by adsorption of CuO : Mn (10‐3 m in ethanol) on Ag island film. Further, the SERS sensitivity of CuO : Mn/Ag heterojunctions has been studied by probing methyl orange. We observed that with Mn‐doping in the lattice of CuO, the SERS signal is enhanced considerably because of ferromagnetic ordering in CuO : Mn. DFT/B3LYP/6‐311 G(d, p) method is used to calculate the energy of HOMO and LUMO level of methyl orange. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, the fabrication of an active surface‐enhanced Raman scattering (SERS) substrate by self‐assembled silver nanoparticles on a monolayer of 4‐aminophenyl‐group‐modified glassy carbon (GC) is reported. Silver nanoparticles are attached to the substrate through the electrostatic force between the negatively charged silver nanoparticles and the positively charged 4‐aminophenyl groups on GC. The active SERS substrate has been characterized by means of tapping‐mode atomic force microscopy (AFM), indicating that large quantities of silver nanoparticles are uniformly coated on the substrate. Rhodamine 6G (R6G) and p‐aminothiophenol (p‐ATP) are used as the probe molecules for SERS, resulting in high sensitivity to the SERS response, with the detection limit reaching as low as 10−9 M . This approach is easily controlled and reproducible, and more importantly, can extend the range of usable substrates to carbon‐based materials for SERS with high sensitivity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Metallic nanostructures, much smaller than the wavelength of visible light, which support localized surface plasmon resonances, are central to the giant signal enhancement achieved in surface‐enhanced Raman scattering (SERS) and surface‐enhanced resonance Raman scattering (SERRS). Plasmonic driven SERS and SERRS is a powerful analytical tool for ultrasensitive detection down to single molecule detection. For all practical SERS applications a key issue is the development of reproducible and portable SERS‐active substrates, where the most widely used metals for nanostructure fabrication are silver and gold. Here, we report the fabrication of a ‘smart film’, containing gold nanoparticles (AuNPs), produced by in situ reduction of gold chloride III (Au+3) in natural rubber (NR) membranes for SERS and SERRS applications. The composite films (NR/AuNP membranes) show characteristic plasmon absorption of Au nanostructures, which notably do not influence the mechanical properties of the NR membranes. The term ‘smart film’ has to do with the fact that the SERS substrate (smart film) is flexible and standalone, which allows one to take it anywhere and to dip it into solutions containing the analyte to be characterized by SERS or SERRS technique. Besides, the synthesis of the AuNPs at the surface of NR films is much simpler than making an Au colloid and cast it onto a substrate surface or preparing an Au evaporated film. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Electrochemically anticorrosive behavior of 4‐methyl‐4H‐1, 2, 4‐triazole‐3‐thiol (MTTL) self‐assembled monolayers (SAMs) on the silver electrode was studied by means of electrochemical impedance spectroscopy (EIS) and polarization measurements. The promising inhibition effect of the MTTL for silver had been affirmed. Results of surface‐enhanced Raman scattering (SERS) experiments indicated that the MTTL molecule in a tilted orientation was self‐assembled on the silver surface through S6 and N2 atoms to form monolayers. An in situ electrochemical SERS experiment implied the changes of adsorption fashion of MTTL momolayers on the silver surface with the potential shifted to more negative direction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Reactive ion etching was used to fabricate black‐Si over the entire surface area of 4‐inch Si wafers. After 20 min of the plasma treatment, surface reflection well below 2% was achieved over the 300–1000 nm spectral range. The spikes of the black‐Si substrates were coated by gold, resulting in an island film for surface‐enhanced Raman scattering (SERS) sensing. A detection limit of 1 × 10?6 M (at count rate > 102 s?1 . mW?1) was achieved for rhodamine 6G in aqueous solution when drop cast onto a ~ 100‐nm‐thick Au coating. The sensitivity increases for thicker coatings. A mixed mobile‐on‐immobile platform for SERS sensing is introduced by using dog‐bone Au nanoparticles on the Au/black‐Si substrate. The SERS intensity shows a non‐linear dependence on the solid angle (numerical aperture of excitation/collection optics) for a thick gold coating that exhibits a 10 times higher enhancement. This shows promise for augmented sensitivity in SERS applications.  相似文献   

12.
Gelatin‐protected silver nanoparticles have been synthesized by a one‐pot, green method for surface‐enhanced Raman scattering (SERS) applications using gelatin as the reducing and stabilizing agent. The gelatin protection on silver nanoparticle surface helps improve its stability greatly and water dispersibility, while retaining high SERS activity of silver nanoparticles. The gelatin‐protected silver nanoparticles showed SERS signals as low as 100 nM of the typical Raman reporter molecules, RuBPY and R6G and 10 μM of other molecules of interest, melamine and folic acid. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
The Raman and surface enhanced Raman scattering (SERS) spectra of a black dyed silk sample (BDS) were registered. The spectral analysis was performed on the basis of Raman and SERS spectral data of isolated samples of Bombyx mori silk fibroin, its motif peptide component (GAGAGS) and the synthetic reactive black 5 dye (RB5). The macro FT‐Raman spectrum of the silk sample is consistent with a silk II‐Cp crystalline fraction of Bombyx mori silk fibroin; the SERS spectrum is highly consistent with conformational modifications of the fibroin due to the interactions with the Ag nanoparticles. The GAGAGS peptide sequence dominates the Raman spectrum of the silk. The SERS spectrum of the peptide suggests a random coil conformation imposed by the surface interaction; the serine residue in the new conformation is exposed to the surface. Quantum chemical calculations for a model of the GAGAGS–Ag surface predict a nearly extended conformation at the Ag surface. The Raman spectrum of the dye was analysed, and a complete band assignment was proposed; it was not possible to propose a preferential orientation or organization of the molecule on the metal surface. Quantum chemical calculations for a model of the dye interacting with a silver surface predict a rather coplanar orientation of the RB5 on the Ag metal surface. The Raman spectrum of the BDS sample is dominated by signals from the dye; the general spectral behaviour indicates that the dye mainly interacts with the silk through the sulphone (–SO2–) and sulphonate (–SO2–O–) groups. Besides the presence of dye signals, mainly ascribed to the sulphone and sulphonate bands, the SERS spectrum of the BDS sample also displays bands belonging to the amino acids alanine, glycine, serine and particularly tyrosine. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
In this work, we demonstrate nano‐structured silver particles photo‐reduced from silver nitride (AgNO3) solution using visible‐light‐activated titanium dioxide (TiO2), which can be a convenient and effective substrate for surface enhanced Raman spectroscopy (SERS) observation. Visible‐light‐activated carbon‐containing TiO2 nanoparticles are applied to photo‐reduce and form nano‐structured silver from AgNO3 upon visible‐light illumination. Photo‐reduced nano‐structured silver is used as an active substrate for SERS studies of TiO2 as well as nano diamond and TiO2. The photo reduction of AgNO3 and SERS observation can be obtained by simultaneously using the same visible laser excitation. The coexistence of the anatase phase with small admixture of the rutile phase in the TiO2 can be observed using SERS. The carbon structure in the carbon‐containing TiO2 was determined to be sp2 type carbon bonding by SERS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Adsorption of 4,4′‐thiobisbenzenethiol (4,4′‐TBBT) on a colloidal silver surface and a roughened silver electrode surface was investigated by means of surface‐enhanced Raman scattering (SERS) for the first time, which indicates that 4,4′‐TBBT is chemisorbed on the colloidal silver surface as dithiolates by losing two H‐atoms of the S H bond, while as monothiolates on the roughened silver electrode. The different orientations of the molecules on both silver surfaces indicate the different adsorption behaviors of 4,4′‐TBBT in the two systems. It is inferred from the SERS signal that the two aromatic rings in 4,4′‐TBBT molecule are parallel to the colloidal silver surface as seen from the disappearance of νC H band (3054 cm−1), which is a vibrational mode to be used to determine the orientation of a molecule on metals according to the surface selection rule, while on the roughened silver electrode surface they are tilted to the surface as seen from the enhanced signal of νC H. The orientation of the C‐S bond is tilted with respect to the silver surface in both cases as inferred from the strong enhancement of the νC S. SERS spectra of 4,4′‐TBBT on the roughened silver electrode with different applied potentials reveal that the enhancement of 4,4′‐TBBT on the roughened silver electrode surface may be related to the chemical mechanism (CM). More importantly, the adsorption of 4,4′‐TBBT on the silver electrode is expected to be useful to covalently adsorb metal nanoparticles through the free S H bond to form two‐ or three‐ dimensional nanostructures. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Lactic acid is a simple and effective indicator for estimating physiological function. Rapid and sensitive detection of lactic acid is very useful in clinical diagnosis. However, the concentration of lactic acid in the physiological state is too low to be detected using traditional Raman spectroscopy. We applied silver colloidal nanoparticles‐mediated surface‐enhanced Raman spectroscopy (SERS) for rapid identification and quantification of lactic acid. The standard SERS spectra of lactic acid were defined and the 1395 cm−1 band intensity was used for quantification from 0.3 to 2 mM (R2 = 0.99). In clinical blood sample measurement, the ultrafiltration (cutoff value 5 kDa) can efficiently reduce background fluorescence to improve SERS performance. We established identical and optimal procedure by adjusting reaction time and volume ratio of serum and nanoparticles to obtain high SERS reproducibility. Finally, we showed that silver colloidal nanoparticles‐mediated SERS technique was successfully applied to detect lactic acid at physiological concentrations in the blood. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
FT‐IR and FT‐Raman spectra of methyl(2‐methyl‐4,6–dinitrophenylsulfanyl)ethanoate (MDIE) were recorded and analyzed. Surface‐enhanced Raman scattering (SERS) spectra were recorded in silver colloid and silver electrode. The vibrational wavenumbers were computed using HF/6‐31G* and B3LYP/6‐31G* basis. The data obtained from vibrational wavenumber calculations are used to assign vibrational bands obtained in infrared and Raman spectroscopies as well as in SERS of the studied molecule. The first hyperpolarizability and infrared intensities are reported. The geometrical parameters of the title compound are in agreement with the reported similar derivatives. The presence of new bands at 1045 and 948 cm−1 in the SERS spectrum in silver electrode is related to the change in orientation of the molecule with respect to the metal surface. In silver colloid SERS spectrum, the methyl group attached to the methoxy carbonyl group is close to the metal surface, whereas on silver electrode the methyl group attached to the phenyl ring is close to the metal surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
We recorded surface‐enhanced Raman scattering (SERS) spectra of metal‐string complexes Co3(dpa)4 Cl2 [di(2‐pyridyl)amido (dpa)], Ni3(dpa)4 Cl2 and the oxidized form of the Ni3 complex to determine their vibrational wavenumbers and to investigate their structures. For SERS measurements these complexes were adsorbed on silver nanoparticles in aqueous solution to eliminate the constraint of a crystal lattice and the complexes remain in thermal equilibrium. From our analysis of the vibrational normal modes we assigned the SERS lines at 242 and 276 cm−1 to Ni3 and Co3 symmetric‐stretching modes of the symmetric form. For Co3 (dpa)4Cl2 a Raman line at 383 cm−1 was assigned to the Co Co stretching mode of the unsymmetric form. The wavenumber of the Ni3 symmetric‐stretching mode of the oxidized form [Ni3(dpa)4]3+ is 274 cm−1, greater than that for neutral Ni3(dpa)4Cl2, in agreement with a prediction of delocalized molecular‐orbital theory that an electron is removed from an antibonding orbital after oxidation. The experimental data show that the SERS technique serves as an excellent tool to observe the variation of metal–metal bonding during an oxidation or reduction reaction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Clusters of silver nanoparticles are generated by the thermally initiated reduction of silver carboxylates (long‐chain fatty acids) in the thin polymer films. The size, shape, and aggregation of these nanoparticles are affected by the reduction reaction in the presence of capping agents. In order to understand the mechanism(s) controlling the silver structure formation, it is essential to understand the surface coordination chemistry occurring during this process. We now report the first application of surface‐enhanced Raman spectroscopy (SERS) to directly characterize adsorbates on the surfaces of silver nanoparticles within a thin film imaging construction containing multiple components. In addition, SERS investigation of model silver substrates was used to confirm the identify of specific adsorbates of silver complexes. This is a powerful tool for revealing the chemistry involved with the control of silver nanoparticle aggregation during thermally induced metallic silver formation within thin films. Both the catechol‐reducing agent and the phthalazinone (PAZ) particle aggregation agent are observed on the metallic silver surface at the initial particle formation and during its crystal growth. However, careful attention to excitation wavelength is required in order to observe all the surface species. PAZ appears to be more effective at stabilizing individual silver particles than other aggregation agents investigated. An understanding of the roles of the aggregation/reducing agents in the growth and aggregation of silver nanoparticles is important for preparing different types of silver particles for specific applications including silver‐based thermal imaging systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
A simple method is demonstrated to detect DNA at low concentrations on the basis of surface‐enhanced Raman scattering (SERS) via polyvinyl alcohol‐protected silver grasslike patterns (PVA‐Ag GPs) grown on the surface of the common Al substrate. By the SERS measurements of sodium citrate and thymine, the PVA‐Ag GPs are shown to be an excellent SERS substrate with good activity, stability and reproducibility. With the use of the tested molecule of thymine, the enhancement factor of the PVA‐Ag GPs is up to ~1.4 × 108. The PVA‐Ag GPs are also shown to be an excellent SERS substrate with good biocompatibility for DNA detection, and the detection limit is down to ~10−5 mg/g. Meanwhile, the assignations of the Raman bands and the adsorption behaviors of the DNA molecules are also analyzed. In this work, the geometry optimization and the wavenumber analysis of adenine–Ag and guanine–Ag complexes for the ground states are performed using density functional theory, B3LYP functional and the LanL2DZ basis set. The transition energies and the oscillator strengths of adenine–Ag and guanine–Ag for the lowest six singlet excited states were calculated by using the time‐dependent density functional theory method with the same functional and basis set. The results show that the charge transfer in the adenine–Ag and guanine–Ag complexes should be the chemical factor for the SERS of the DNA molecules. Lastly, this method may be employed in large‐scale preparation of substrates that have been widely applied in the Raman analysis of DNA because the fabrication process is simple and inexpensive. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号