首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a simple model that uses a novel photon scattering approach to predict the depth profile response obtained when confocal Raman spectroscopy is applied both to silicon and to a number of related polymeric materials of varying optical clarity. This paper first provides an overview of the models proposed to date to demonstrate the evolution in understanding of the confocal Raman response of semi‐transparent materials, based upon geometrical optics. A new model is then described that is based upon the twin notions of a permanent extended Raman illuminated volume and the degree of extinction of the incident and Raman scattered photons from the whole of the illuminated volume as it is gradually moved further into, or defocused above, the sample. The model's predictions are compared with empirical data from previous studies of a range of semi‐crystalline polymers with different scattering properties and, by means of contrast, with that of a silicon sample. We show that, despite its inherent simplicity, the physics this model utilizes is able successfully to predict the form of the depth profile for each material, something that has not been achieved by any model previously proposed, and that the parameters used in the model scale with independent physical measurements. Finally the model is used to account for the fact that useful Raman spectra can be obtained when the laser is focused as much as 40 µm above the sample surface. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
H+-containing lanthanide-doped perovskites A(Ba, Sr etc.)B(Zr, Ce, Ti etc.)O3 are potential ceramic membranes for fuel cell and medium temperature water electrolysis (300–800 °C). The comparison studies of the hydrated and non-hydrated Yb-doped BaZrO3 and SrZrO3 were performed by thermal expansion, medium–high temperature neutron and room-temperature high-pressure Raman scattering. Neutron diffraction and elastic/quasi-elastic studies carried out for BaZrO3 ceramic show the presence of the protons, their successive diffusion above ∼600 °C, and then their departure above 750 °C (under vacuum). Phase transitions and their modification by proton insertion are discussed. A high-pressure Raman study of SrZrO3 performed at room temperature in the diamond anvil cell reveals the presence of two pressure-induced phase transitions at about 5 and 22 GPa and confirms that proton insertion modifies the phase transition sequences. Paper presented at the 11th EuroConference on the Science and Technology of Ionics, Batz-sur-Mer, Sept. 9–15, 2007.  相似文献   

3.
A well‐ordered natural manganocolumbite single crystal of high quality was used as a prototype for the first determination of the polarized optical phonon modes of materials with the columbite structure. Electron microprobe and X‐ray diffraction characterizations determined the chemical formula as Mn0.60Fe0.40(Nb0.80Ta0.20)2O6, a cationic ordering of 81%, and the crystal structure as belonging to the Pbcn group. Polarized Raman and infrared‐reflectivity spectroscopies on oriented samples allowed us to discern 50 of the 54 predicted gerade (Raman) modes and 31 of the 38 predicted ungerade (infrared) modes for the columbite structure. The selection rules were verified, and polarization leaks only due to slight sample misorientation, confirming the high purity, ordering and quality of the material. From the polar phonon spectra, intrinsic dielectric merit factors < εr> = 29.2 and < Qu × f> of 64 THz were determined, showing adequate values for designing applications in microwave circuitry. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Mebendazole is a broad spectrum anthelminthic drug, which is widely used in large scale deworming programmes. This active pharmaceutical ingredient exhibits three crystal forms, namely, polymorphs A, B, and C. Therapeutic trials suggested that the most stable form, polymorph A, is inactive. However, the dissolution test normally used as a quality control tool is not able to discriminate among the polymorphs of mebendazole. In this work, the ability of the vibrational spectroscopic techniques (mid and nearinfrared absorption and Raman scattering) for the identification of the crystal form of this compound is evaluated. On the basis of these observations, this methodology is applied to determine the polymorphs of MBZ used in the formulation of the commercial tablets available in the Brazilian and German markets. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Morphology, chemical distribution and domain size in poly(ethylene terephthalate)/high‐density poly(ethylene) (PET/HDPE) polymer blends of various ratios prepared with and without maleic anhydride have been analyzed with confocal Raman mapping and SEM. The ratioimage method introduced here allows us to obtain enhanced chemical images with higher contrast and reliability. Compatibility numbers (Nc) are calculated to evaluate the compatibility of the blends. The incompatible polymer blends show heterogeneous distribution with phase separation behavior, while the semicompatible blends prepared with maleic anhydride show much smaller subphase distributions with less distinct interphases. After the blending modification by maleic anhydride of only 0.5%, the viscosity status and dispersibility between PET and HDPE could be substantially improved, and the interactions that exist between the two phases have also been proved by ATR‐FT‐IR results. High‐spatial‐resolution confocal Raman mapping coupled with the ratioimage method provides a very attractive way to characterize the compatibility and phase behavior of the polymer blend through different blending methodologies. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Significant changes observed in the Raman spectra of formamide (FA)–tetrahydrofuran (THF)–dioxane (DX) mixtures have been interpreted in terms of preferential interactions. The Gutmann's donor (DN) and acceptor (AN) number values of these solvents give a good interpretation for the differences observed. In the ternary system, THF behaves as a stronger base than DX and the band at ∼442 cm−1, recently assigned to the FA–DX adduct is only observed at the highest FA concentration. Quantitative analyses performed at the C (FA) and C O (THF) stretching regions show that the extent of the association for the [FA]n adduct is significantly larger than for the FA THF adduct. Electrostatic parameters, such as dipole moment and dielectric constant, are also regarded as a better interpretation of these associations. The good correlation between DN and electrostatic parameters indicates that the basic strength increases in the order DX < THF < FA. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
This study describes the application of confocal Raman microscopy to the detection and identification of explosives and their precursors in situ on undyed natural and synthetic fibres and coloured textile specimens. Raman spectra were obtained from explosives particles trapped between the fibres of the specimens. The explosives pentaerythritol tetranitrate (PETN), trinitrotoluene (TNT), and ammonium nitrate as well as the explosives precursors hexamethylenetetraamine (HMTA) and pentaerythritol were used in this study. Raman spectra were collected from explosives particles with maximum dimensions in the range 5–10 µm. Despite the presence of spectral bands arising from the natural and synthetic polymers and dyed textiles, the explosive substances could be identified by their characteristic Raman bands. Furthermore, Raman spectra were obtained from explosives particles trapped between highly fluorescent clothing fibres. Raman spectra of the explosive and explosive precursor substances on dyed and undyed clothing substrates were readily obtained in situ within 90 s without sample preparation and with no alteration of the evidential material. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
We present a Raman scattering and dilatometry study of polycrystalline samples of the magnetic superconducting ruthenocuprates RuSr2Gd2−xCexCu2O10+δ (RuGd1222) and RuSr2GdCu2O8 (RuGd1212). In the Raman spectra a high-temperature diffusive-like laser-tail develops below the magnetic ordering temperature (TM) into an underdamped peak which shifts up to 130 cm−1. A line assigned to O(Ru) phonons hardens, narrows and strengthens strongly below TM. Finally, a phonon peak appears below TM at 590 cm−1. These three magnetic-order-dependent features are observed for RuGd1212 and for RuGd1222 with x=1.0, but do not appear for x=0.5. Dilatometry measurements, on the other hand, evidence a change of the expansion coefficient at TM. These results point to a structural effect accompanying the magnetic order, and suggest a complex interplay of spin and lattice degrees of freedom in these ruthenocuprates.  相似文献   

9.
Raman spectroscopy was used to study vaterite samples of biological, geological and synthetic origin. The Raman band positions and the full width at half‐maximum (FWHM) of the lattice modes and the internal modes of the carbonate ion of all specimens show no significant differences between vaterites of different origin. With increasing Mg concentrations, synthetic vaterite samples show increasing FWHM in the region of the lattice modes and the three ν1 bands, whereas no change in luminescence was detected. In contrast, in situ measurements of vaterite areas in freshwater cultured pearls (FWCPs) by laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) together with the Raman spectra obtained at the same points show that the luminescence intensity in biological samples is affected by the magnesium content. The Raman spectroscopic features of vaterite and parisite‐(Ce) are compared, and their similarities suggest that the structure of vaterite contains at least three crystallographically independent carbonate groups and similar carbonate group layers. A band at 263 cm−1 is observed for the first time in this study, whereas it could be demonstrated that bands previously reported at 130 and 190 cm−1 do not belong to vaterite. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Polarized micro-Raman spectra of different compounds belonging to the Sr14Cu24O41-type structure were studied. In the spectra with parallel polarization along the plane crystal axes of the insulating samples Sr9R5Cu24O41 (R = La, Y) a broad peak near 3000 cm−1, similar to the well-known two-magnon peak in the layered cuprates, was observed. In addition to the Raman lines characteristic for this structure, we observed only in the spectra with parallel to the chains numerous lines between 100 and 1200 cm−1, probably originating from Raman-forbidden infrared-active only LO phonons and their combinations. In the spectra of the conducting compounds Sr14−xCaxCu24O41 (x = 0,7) these features were very weak or disappeared. We interpret these results as Raman evidence for hole doping of the Cu2O3 “spin-ladder” planes and for a redistribution of holes between chains and planes through Ca substitution in the case of the rare-earth-free samples.  相似文献   

11.
Confocal Raman microscopy was applied in order to investigate the homogeneity of donor doping in Nb:SrTiO3 single crystals. Measurements of local Raman spectra revealed a systematic relation between the intensity of the Raman signal and the donor content of the crystals. We successfully elaborated a correspondence between the electronic structure and the intensity of the Raman lines using a crystal with macroscopic inhomogeneity as a demonstration sample. By mapping the distribution of the intensity of the Raman signal, we identified a characteristic inhomogeneous structure related to the presence of clusters with sizes of 5 µm to 20 µm, indicating inhomogeneous donor distribution caused by flaws introduced during crystal growth. Hence, we propose confocal Raman microscopy as a convenient technique for investigating the homogeneity and quality of doped perovskite surfaces, which are needed for various technological applications. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

12.
Confocal Raman microspectroscopy and portable X‐ray fluorescence spectroscopy were used nondestructively to characterise 18 intact jade artifacts from the Cemetery of the Ying State in Pingdingshan, Henan Province, China. These jade artifacts date from the early to the middle of the Western Zhou Period (the mid‐11th to the mid‐9th century BC). Thirteen jade artifacts made of tremolite and two jade artifacts made of actinolite were discriminated from each other by their hydroxyl stretching modes, and a malachite pendant, a muscovite dagger‐axe, and a crystal pendant were also identified. Black graphite was analysed in three jade artifacts composed of tremolite, and the mineralization temperatures were estimated and compared. A red powder was found on the surface of all of the jade artifacts, and this was found to be cinnabar (HgS), which is thought to have been added to the tomb environments during burial ceremonies. The chemical compositions and the possible provenances of the jade artifacts are briefly discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
吴楠楠  里佐威  刘靖尧  欧阳顺利 《中国物理 B》2012,21(10):103101-103101
In this work,we measure the Raman scattering cross sections(RSCSs) of the carbon-carbon(CC) stretching vibrational modes of canthaxanthin in benzene,acetone,n-heptane,cyclohexane,and m-xylene.It is found that the absolute RSCS of CC stretching mode of canthaxanthin reaches a value of 10 24 cm 2 ·molecule 1 ·sr 1 at 8×10 5 M,which is 6 orders of magnitude larger than general RSCS(10 30 cm 2 ·molecule 1 ·sr 1),and the RSCSs of canthaxanthin in various solvents are very different due to the hydrogen bond.A theoretical interpretation of the magnetic experimental results is given,which is introduced in a qualitative nonlinear model of coherent weakly damped electron-lattice vibration in the structural order of polyene chains.In addition,the optimal structure and the bond length alternation(BLA) parameter of canthaxanthin are calculated using quantum chemistry calculation(at the b3lyp/6-31g(d,p) level of theory).The theoretical calculations are in good agreement with the experimental results.Furthermore,the combination of Raman spectroscopy and the quantum chemistry calculation study would be a quite suitable method of studying the structures and the properties of the π-conjugated systems.  相似文献   

14.
This paper presents a systematic analysis of the infrared absorption spectra and Raman scattering of the triacylglycerol molecule predominant in raw bovine milk. Gas chromatography measurements were also performed and revealed the palmitic, stearic, and oleic acids as the most predominant fatty acids in the composition of milk. Based on the gas chromatography results, infrared, and Raman spectra of the triacylglycerol with this combination of fatty acids were simulated. The theoretical spectra were compared with the experimental ones of milk fat and fluid raw milk. Assignment of bands of milk fat was proposed, which can be used for a quality monitoring of the product. We also performed a multivariate model of partial least squares from samples of fluid milk with different concentrations of fat. As a result, the most important variables in the projection were selected as vibrational markers for quality monitoring and quantifying of this important constituent of milk. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
We present experimental Raman scattering results on single‐crystal silicon monoarsenide (SiAs). Based on a comparison between Raman measurements and first‐principles density functional theory calculations, we found evidence that SiAs will occur in a monoclinic crystal structure rather than an orthorhombic one as has been discussed in the literature. Further, we provide a detailed discussion of the vibrational properties of the monoclinic structure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Regularities of the cubic-tetragonal transformation (C→t′) in partially stabilized zirconia were studied with Raman spectroscopy and high-temperature Raman spectroscopy techniques. New ‘low temperature’ mechanism of tetragonal nanoparticles formation in a volume of cubic solid solution was revealed in ZrO2-Gd2O3 (Eu2O3) (6-8 mol%) single crystals. This mechanism includes nucleation of the tetragonal nanoparticles due to diffusionless C→t′ phase transformation at the first stage and gradual decrease of the stabilizer concentration inside t′-domains after subsequent low-temperature annealing. Predominant orientation of tetragonal domains due to the stress-induced C→t′ transformation was registered in ZrO2-Gd2O3 (8 mol%) single crystals.  相似文献   

17.
The cascade model of inelastic resonant Raman scattering considers real electronic states in the conduction band (CB) as intermediaries to explain multiple longitudinal optical (LO) Stokes‐shifted lines in the emission spectra. In this study, we report modification in the cascade model under conditions where the scattered photons after multiple transitions have energy lower than the bandgap (Eg) and give rise to higher order n‐LO lines. The higher order n‐LO lines involve electron transition between the trap levels, which are created by impurities or defects in the forbidden energy gap, and are analogous to the real electronic states in CB, depending on the density of defects or impurities in the lattice. The presence of traps in the forbidden gap (1) acts as virtual intermediate states giving rise to higher order n‐LO modes and (2) tends to decrease the radiative recombination probability leading to quenching of the luminescence emission and line width (full‐width at half‐maximum) broadening. Ultraviolet Raman scattering in Mn‐doped ZnO (Zn1−xMnxO) thin films were investigated and the experimental observations analyzed in the domain of the modified cascade model. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
We developed a micro‐Raman and photoluminescence imaging technique for visualizing the internal stress fields in a sapphire crystal. The technique was applied to an Australian sapphire gemstone with a zircon inclusion. Considering piezospectroscopic effects on Raman and photoluminescence spectra, the Raman shifts of sapphire around the zircon inclusion were converted to hydrostatic pressure and deviatoric components of stress tensor. The internal stress was highly concentrated at the tips of the zircon crystal, where the deviatoric stress and the hydrostatic pressure component reached 700 and 470 MPa, respectively. Generation of compressive stress on the crystal surface of zircon can be explained by the difference in thermal expansion coefficients and elastic constants between sapphire and zircon. In general, internal stress fields induced by mineral inclusions reflect the pressure and temperature conditions at which the host sapphire gemstones were crystallized. Thus, the present technique can be utilized to identify the origin of gemstones. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
In 2008, excavations were conducted by the Northern Ceramic Society at the site of the former Lancaster delftware potworks, which operated between 1754 and about 1790. The recovered sherds have been non‐destructively examined by Raman and electron microscopies and the iron phases in the biscuit by Mössbauer spectroscopy. These methods have provided a new understanding of the mineralogy of the delftware produced at Lancaster using clay imported from Carrickfergus in Ireland and blended with the local ferruginous‐aluminous clays. This has implications for the attribution of delftware produced at Liverpool, Bristol, Scotland and Ireland. The Carrickfergus clay has been found to be highly dolomitic resulting in the body of the delftware forming diopside and the magnesian olivine forsterite, when fired. Brookite had not converted to rutile, nor had tridymite, nor cristobalite formed; the K‐feldspars did not undergo further chemical reactions, and the observation of metakaolin would suggest that the biscuit firing temperature was in the order of 800–900 °C. Chalcedony containing moganite was established as the silica source. A cobalt‐containing lead‐tin glaze was applied to the biscuit body and, after decorating, was fired. The mineralogy of the pigments used to decorate the objects indicate the yellow to be the PbSbSn triple oxide, the green to be a copper silicate mixed with lead‐tin yellow, the purple and browns to be manganese silicates and the blue to contain cobalt spinels and cobalt pyroxenes. Diopside crystals together with recrystallised tin agglomerates have been observed floating within the glaze. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号