首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An estimated 34 million people are living with human immunodeficiency virus (HIV) worldwide. A polymeric drug delivery device for women has been developed to help reduce male to female vaginal transmission of HIV‐1. The device is an intravaginal slow‐release ring containing the antiretroviral drug dapivirine as the active pharmaceutical ingredient (API). In all pharmaceutical delivery systems, API content is a critical control point. Conventional quantification of the API in vaginal rings is a stepwise, destructive and time‐consuming process involving solvent extraction and high pressure liquid chromatography. This study investigates the potential of Raman spectroscopy for fast and non‐destructive quantification of dapivirine in intravaginal rings. Wide‐area illumination measurements were carried out on rotating rings using a custom built ring spinner. Customized reference rings of known concentrations were used to build calibration models, and the models were verified by rings from production using the established method as reference analysis. Bi‐ and multivariate calibration methods were applied. Models based on band ratios and partial least squares (PLS) regression models performed similarly well resulting in low model and prediction errors. Next to an alternative reference analysis for quality assurance, Raman can also be used as a production process performance analysis and optimization tool due to its non‐destructive nature and speed of analysis. Using measurements on connected spots over the entire ring circumference, the within ring variation in API was determined. ANOVA showed that there was a statistical difference in API distribution over the rings, information that can be of use in process optimization, for example. However, Tukey's honestly significant difference (HSD) test proved that no regions of the ring were out of specifications, indicating a stable production system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
表面活性剂热致液晶性质的拉曼光谱研究徐蔚青吴立新1,2(1吉林大学超分子结构与谱学开放实验室长春1300232中科院长春物理研究所)RamanSpectraofaSurfactantonThermaltropicLiquidCrystalProper...  相似文献   

3.
The quantification of polymorphs in dosage forms is important in the pharmaceutical industry. Conventional Raman spectroscopy of solid‐state pharmaceuticals may be used for this, but it has some limitations such as sub‐sampling and fluorescence. These problems can be mitigated through the use of transmission Raman spectroscopy (TRS). The efficacy of TRS measurements for the prediction of polymorph content was evaluated using a ranitidine hydrochloride test system. Four groups of ranitidine hydrochloride‐based samples were prepared: three containing form I and II ranitidine hydrochloride and microcrystalline cellulose (spanning the ranges 0–10%, 90–100% and 0–100% form I fraction of total ranitidine hydrochloride), and a fourth group comprising form I ranitidine hydrochloride (0–10%) spiked commercial formulation. Transmission and conventional Raman spectroscopic measurements were recorded from both capsules and tablets of the four sample groups. Prediction models for polymorph and total ranitidine hydrochloride content were more accurate for the tablet than for the capsule systems. TRS was found to be superior to conventional backscattering Raman spectroscopy in the prediction of polymorph and total ranitidine hydrochloride content. The prediction model calculated for form I content across the 0–100% range was appropriate for process control [ratio of prediction to deviation (RPD) equal to 14.62 and 7.42 for tablets and capsules, respectively]. The 10% range calibrations for both form I and total ranitidine hydrochloride content were sufficient for screening (RPDs greater than 2.6). TRS is an effective tool for polymorph process control within the pharmaceutical industry. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A methodology of multivariate chemometric techniques based on the information‐theoretic approach was applied for elucidating chemical reaction information from a Raman data array R m×ν that arises from in situ reaction monitoring. This reaction‐induced dynamic dataset R m×ν can be contaminated by random cosmic ray spikes found in the midst of characteristic spectral variations associated with the disappearance or emergence of Raman active reactants, intermediates and products. Such spurious cosmic spikes were identified and removed using a novel and fast numerical approach based on maximum and minimum spectral entropy principles while preserving the genuine reaction‐induced spectral variations. Subsequently, the band‐target entropy minimization (BTEM) algorithm, a minimum spectral entropy based self‐modeling curve resolution technique, was applied to recover the pure component spectra of Raman active chemical species. Information gain through the chemometric analyses was calculated using information entropies with base 2 logarithm. This sequence of information‐theoretic chemometric analyses (or transinformations) was successfully tested on the reaction spectral data obtained from alcoholysis of acetic anhydride, which contains four Raman active chemical species. It is envisioned that this series of multivariate statistical analyses will be useful in chemical reaction studies and process analytical technology (PAT) applications that utilize in situ Raman spectroscopy to monitor transient dynamic changes in chemical concentrations, and also in Raman microscopy/imaging data containing spatial variations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
In this contribution we present a systematic study on the dispersion of SWCNTs in a water-based solution of biocompatible detergent: sodium deoxycholate (DOC). By avoiding harsh chemical conditions, which are known to damage nanotubes structure, a stable SWCNTs suspension was created. Long term stirring of the solution led to preparation of a stable transparent solution, containing well-dispersed isolated SWCNTs. The as-prepared dispersion remained stable and clear for two months. Optical absorption spectroscopy was employed to measure SWCNTs suspension stability. Nanotube aggregation was evaluated through the tangential mode (G mode) present in the Raman spectrum. High-resolution transmission electron microscopy was employed to observe the mechanism of debundling process.  相似文献   

6.
聚合物的合成与加工过程影响着材料的聚合度、结晶度、取向度以及共混组分的均匀性,最终影响聚合物产品的性能。因此对聚合物合成与加工过程中材料的实时状态进行监控至关重要。拉曼光谱在线测量技术凭借其无损检测、采样简单、可靠性高,对试样的外形和物态没有任何特定要求,且能在高温、高压、有毒的环境中直接进行在线测量等特点,在高分子材料合成与加工领域有了越来越广泛的应用。将此在线测量技术应用到高分子合成与加工过程中,实时测量高分子材料的化学组成和物理性质,并将测量数据用于控制合成与加工过程,可以提高高分子材料的性能。本文选择聚合反应转化率、聚合产物粒径及其分布、聚合物结晶度、聚合物取向度、多相共混聚合物组分含量等五个反映聚合物合成或加工过程状态的参量,概述了拉曼光谱在线测量上述参量的相关研究进展,并对拉曼光谱在线测量技术在聚合物合成及加工中的应用发展进行了展望。  相似文献   

7.
Here, we study a low (less than 0.1 µg/ml) concentration aqueous suspension of single‐wall carbon nanotubes (SWNTs) by Raman‐induced Kerr effect spectroscopy (RIKES) in the spectral bands 0.1–10 and 100–250 cm−1. This method is capable of carrying out direct investigation of SWNT hydration layers. A comparison of RIKES spectra of SWNT aqueous suspension and that of milli‐Q water shows a considerable growth in the intensity of low wavenumber Raman modes. These modes in the 0.1–10 cm−1 range are attributed to the rotational transitions of H2O2 and H2O molecules. We explain the observed intensity increase as due to the production of hydrogen peroxide and the formation of a low‐density depletion layer on the water–nanotube interface. A few SWNT radial breathing modes (RBM)are observed (ωRBM = 118.5, 164.7 and 233.5 cm−1) in aqueous suspension, which allows us to estimate the SWNT diameters (∼2.0, 1.5, and 1 nm, respectively). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The applications of near-IR spectroscopy to process analysis using a Fourier transform spectrometer are described. In recent years, process analysis based on near-IR spectroscopy has received keen interest from a growing number of industries. Some configurations of Fourier transform near infrared (FT-NIR) interferometers used for process analysis are introduced as special optical systems for the realization of stable and reproducible performance. Moreover, the applications of NIR spectroscopy to process analysis using FT-NIR spectrometers are overviewed and two examples of applications are described in more detail. Furthermore, process analytical technology (PAT) for the pharmaceutical industry is introduced as a future trend of the application of FT-NIR spectroscopy, and a dual-wavelength system that can combine NIR and IR spectra is discussed as a newly proposed PAT tool for understanding processes.  相似文献   

9.
The vibrational properties of both wild‐type and selenomethionine (SeMet)‐substituted protein SOUL crystals have been investigated here by Raman spectroscopy. Several Raman peaks observed in the spectra of methionine and SeMet were identified as specific markers. The unambiguous assignment of these peaks has been inferred by comparing the experimental Raman spectra of the pure amino acids, recorded in solid state and in aqueous solution, and the Raman intensities computed using quantum chemical calculations. Moreover, a quantitative evaluation of the relative amount of SeMet replacement in the crystals of protein SOUL labelled with SeMet has been estimated through the ratio between the Raman intensities of marker peaks. These results offer evidence of the potential of Raman microscopy as a reliable and non‐invasive tool for novel in‐depth structural investigations in biocrystallography. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Model‐based pre‐processing has become wide spread in spectroscopy and is the standard procedure in Fourier‐transform infrared spectroscopy. It has also been shown to give valuable contributions in Raman spectroscopy. Extended multiplicative signal correction is flexible enough to handle varying fluorescence background and take into account individual variations in baselines while still keeping enough rigidity through reference spectra and model fitting to avoid degenerate solutions and overfitting, when used correctly. We demonstrate the basic extended multiplicative signal correction method and some extensions, including a novel shift correction, on real Raman data to demonstrate effects on visual appearance, replicate variation and prediction. Comparisons with other standard correction methods are also shown and discussed. © 2016 The Authors. Journal of Raman Spectroscopy Published by John Wiley & Sons, Ltd.  相似文献   

11.
In this work, Raman spectroscopy was successfully used for the quantitative determination of the liquid phase concentration in an aqueous polymorphic system of D‐mannitol. An extensive study has initially been performed to identify the influence of the solid state, e.g. particle size, particle amount, and different polymorphs, on the intensity of the characteristic Raman solute signal. It was found that the existence of solid phase can decrease Raman intensity, and this influence is more significant when the suspension density is higher, e.g. with smaller size and larger amount of particles. Based on this information, a large number of samples were examined by Raman spectroscopy in the form of clear solutions and suspensions. The spectral preprocessing and partial least squares (PLS) regression were then used to relate the solute concentrations to these spectral data, independent of solid state. Several PLS calibration models were developed with different treatments to the spectral data, and the optimized strategy was finally demonstrated. Particularly, a reference peak at 578 cm−1 related to the sapphire in the Raman probe window was innovatively applied to reduce the influences from the equipment and other external variations, with which the full‐spectrum PLS model was seen to give more stable results rather than partial spectral regions. The optimized model was subsequently applied to predict the liquid phase concentration in a multiphase multicomponent dynamic process, the solvent mediated polymorphic transformation (SMPT) of mannitol, and it was shown that the offline measurements and the predicted values were mainly in agreement with one another. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The use of Raman spectroscopy for the qualitative and quantitative analysis of dilute aqueous solutions is of interest to the biopharmaceutical manufacturing sector. However, the inherent weakness of the Raman effect, coupled with spectral variability due to spurious signals from sample holders, can produce significant problems for chemometric‐based high‐throughput assays. Therefore, there is a need for a multi‐well sample holder that ensures robust and repeatable measurements, in particular from dilute aqueous solutions such as cell culture media. Here we demonstrate the efficacy of a novel, electropolished, stainless steel multi‐well plate (SS‐MWP) sample holder with 96 wells for dilute aqueous solution analysis. A comprehensive study of the spectroscopic behaviour was carried out and comparisons made with multi‐well plates fabricated from polystyrene, polypropylene, and aluminium. A key factor in the validation studies is the use of intrinsically weak Raman scattering systems, e.g. water and dilute glucose solutions. The data collected show that the SS‐MWPs are much superior in terms of robustness, resistance to chemical attack, and measurement reproducibility and as such are the ideal sample holders for Raman analysis of dilute solutions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Raman spectroscopy is a novel method of food analysis and inspection. It is highly accurate, quick, and noninvasive. The investigation and monitoring of food processing is important because most of the foods humans eat today are processed in various ways. In this article, the use of Raman spectroscopy in food processes, such as fermentation, cooking, processed food manufacturing, and so on, are explored. The characteristics and difficulties of the Raman inspection of these processes are also discussed. According to the various research reports, Raman spectroscopy is a very powerful tool for monitoring these food processes in lab environments and is likely to see usage in situ in the future.  相似文献   

14.
Surface‐enhanced Raman spectroscopy (SERS) has been suggested as a powerful tool to identify bacteria, drawing from its high fingerprint (vibrational) information content, its extreme sensitivity (down to the single molecule level) and its obliviousness to the aqueous environment intrinsic to biological systems. We review here in a comparative manner the various studies that attempted to utilize SERS for this important goal in light of the work carried out by our own group over the past 10 years or so. We show that SERS has an additional major advantage, namely, it introduces a new dimension of selectivity, which, on the one hand, makes it even more suitable as an analytical tool, but on the other hand, it requires gaining control of the precise manner in which the SERS‐active metal centers are produced and brought into contact with the micro‐organism. Our emphasis in this review is on understanding the spectra in terms of the nature of the SERS‐active centers and their placement within the bacterium. On the interpretation and assignment of the spectra, we constantly keep in mind the final goal of bacteria identification. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Pharmaceutical solids exposed to thermal stress during manufacturing processes undergo various phase transformations in bulk drug substances or excipients, resulting in altered dosage form performance. Due to its relatively rapid spectral acquisition rate, as well as the possibility of incorporation into in‐line monitoring, Raman spectroscopy is ideally suited to monitoring the transformation between different solid‐state forms. In this study, we demonstrate that the transition temperature for polymorphs can be estimated from the transformation profiles obtained from real‐time, in situ, simultaneous Raman spectroscopic, and differential scanning calorimetric data. Using this method, we have estimated the transition temperature of the solid‐state transformation of the enantiotropically related sulfathiazole polymorphs III and I. These results suggest that this method is a useful approach to determine transition temperatures in systems that are not amenable to accessing other methods. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
In the recent years, Raman and IR spectroscopies have attracted increasing attention as fast, non‐invasive and widely applicable alternative analytical approaches for a variety of materials. Vibrational spectroscopy has been used in the analysis of herbal products, dyes and sensitive art objects, besides complex and aqueous biomaterials such as biopolymers or mammalian tissue. Compared to conventional analytical methods based on high‐performance liquid chromatography (HPLC) or gas chromatography, which often involves extensive and time‐consuming sample preparation, Raman or IR spectroscopy can avoid these procedures. The present work introduces a fast and reliable quantification method for the determination of naturally occurring indigo dye in dyer's knotweed (Polygonum tinctorium) based on Fourier transform (FT) Raman spectroscopy. The results were validated by HPLC‐UV, and the merits and drawbacks of the present method are elaborated. Besides the qualitative aspects of signal assignment and comparison to appropriate attenuated total reflectance Fourier transform infrared (ATR‐FT‐IR) measurements, the Raman spectrum of dihydro indigo, an important intermediate in the indigo dying process, is presented for the first time and discussed with regard to its spectroscopic behaviour. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
We present a detailed theoretical and experimental characterization of a new methodology for stimulated Raman spectroscopy using two duplicates of a chirped, broadband laser pulse. Because of the linear variation of laser frequency with time (‘chirp’), when the pulses are delayed relative to one another, there exists a narrow bandwidth, instantaneous frequency difference between them, which, when resonant with a Raman‐active vibration in the sample, generates stimulated Raman gain in one pulse and inverse Raman loss in the other. This method has previously been used for coherent Raman imaging and termed ‘spectral focusing’. Here, gain and loss signals are spectrally resolved, and the spectrally integrated signals are used to determine the spectral resolution of the measured Raman spectrum. Material dispersion is used to generate a range of pulse durations, and it is shown that there is only a small change in the magnitude of the signal and the spectral resolution as the pulse is stretched from 800 to 1800 fs in duration. A quantitative theory of the technique is developed, which reproduces both the magnitude and linewidth of the experimental signals when third‐order dispersion and phase‐matching efficiency are included. The theoretical calculations show that both spectral resolution and signal magnitude are severely hampered by the third‐order dispersion in the laser pulse, and hence, a minimal amount of chirp produces the most signal with only a slight loss of spectral resolution. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Raman spectroscopy has steadily gained popularity as a powerful tool in both the analytical lab and the undergraduate classroom. The technique is attractive because it allows for rapid, nondestructive qualitative or quantitative analyses of many analytes with little or no sample preparation requirements. The introduction of less expensive, smaller, and more powerful diode laser excitation sources and the recent availability of rugged, red‐sensitive, charge‐coupled device–based miniature modular spectrometers has prompted the integration of Raman spectroscopy into the undergraduate curriculum. We have evaluated the analytical utility of a small, portable Raman instrument for the qualitative and quantitative analyses of two “real” samples. The experiments in this paper were designed to be used as a laboratory component for undergraduate education and include the quantification of ethanol in consumer alcoholic beverages and the qualitative identification of marine diesel fuels that had been spilled on surface waters. In the case of the liquor samples, the ethanol concentration in colorless, odorless alcoholic beverages could be determined very rapidly, but colored and heavily scented liquors proved more difficult and required pretreatment with activated carbon to remove fluorescence that masked the Raman signal. Similarly, a high‐intensity fluorescence background was observed to mask characteristic Raman bands of the diesel fuels. Some reduction in the intensity of the fluorescence was observed after carbon pretreatment of the fuels. The set of undergraduate experiments described in this paper treat the concepts of quantitative and qualitative analysis using portable instrumentation, instrumental calibration by the standard addition and external curve methods, and method development for the analysis of real consumer and environmental samples.  相似文献   

19.
To detect trace‐level polycyclic aromatic hydrocarbons, some investigations of an improved self‐assembly method are carried out using gold colloid films for the preparation of the surface‐enhanced Raman scattering (SERS)‐active substrate. Extinction spectra and scanning electron microscopy images reveal that controllable surface plasmonic metal substrates can be obtained by increasing the temperature of (3‐aminopropyl)trimethoxysilane solution up to 64.5 °C. The SERS‐active substrates have a high enhancement factor, and they can be both easily prepared and reproducible. With the use of these substrates, different concentrations of pyrene and anthracene in aqueous solutions were detected by SERS. A further enhancement can be supported by shifted excitation Raman difference spectroscopy. Raman signals of pyrene and anthracene adsorbed on gold colloid substrates up to limits of detection at 5 and 1 nmol/l, respectively, can be obtained. The quantitative analysis shows the possibility of in situ detection of polycyclic aromatic hydrocarbons while such gold colloid film serves as a SERS‐active substrate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Astaxanthin is a carotenoid naturally found in microbial organisms, microalgae, and many crustaceans. Its consumption has led to beneficial effects such as pigmentation of marine animals, and it favorably addresses several human health issues as a result of its high important antioxidant property. Several companies produce synthetic trans‐astaxanthin for dietary purposes in aquaculture, where it is mainly used for pigmentation. It is known that trans‐astaxanthin manifests itself as a monomer in organic solvents, as aggregates in aqueous solutions of organic solvents, or as crystalline solids. These forms display unique optical and structural properties, which have an impact on biological systems. In this work, we report on detailed Raman investigations, in conjunction with optical absorption spectroscopy, of monomer, aggregates, and crystalline forms of trans‐astaxanthin. The Raman and optical absorption spectroscopic investigations of trans‐astaxanthin aggregates were performed as a function of time, showing the formation of card‐packed aggregates after 2 h, and head‐to‐tail aggregates after 24 h in a 10% acetone–water astaxanthin solution. For the crystalline trans‐astaxanthin, a pointwise Raman mapping evidenced the presence of two distinct crystal structures. The Raman modes of these crystal structures (A and B) were correlated with the intermolecular interactions present in chloroform solvated (AXT‐Cl) and unsolvated (un‐AXT) trans‐astaxanthin single crystals. Both crystal structure A and the card‐packed aggregates have similar intermolecular π stacking interactions as AXT‐Cl. The crystal structure B and the head‐to‐tail aggregates showed linear chain features as in un‐AXT. This work also clearly demonstrates that Raman spectroscopy is a powerful tool to distinguish the crystal structures present in crystalline powder of trans‐astaxanthin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号