首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用等离子体增强化学气相沉积技术,以N2掺入到SiH4和H2的沉积方式,分别在玻璃和N型单晶硅片(100)衬底上制备富硅氮化硅薄膜。通过紫外-可见光吸收光谱、傅里叶变换红外吸收光谱(FTIR光谱)、拉曼光谱和光致发光谱(PL谱)分别表征掺氮硅薄膜材料的带隙、结构及其发光特性的变化。结果表明:在氢气的氛围中,随着氮气流量的增加,氢原子能够对薄膜缺陷起到抑制作用,并使较低的SiH4/N2流量比下呈现富硅态,但却不利于硅团簇的形成。随着氮原子的掺入,Si—N键的含量增大,带隙增大,薄膜内微结构的无序度也增大,薄膜出现了硅与氮缺陷相关的缺陷态发光;随着氮原子进一步增加,出现了带尾态发光,进一步讨论了发光与结构之间的关联。这些结果有助于采用PECVD制备富硅氮化硅对材料发光与结构特性的优化。  相似文献   

2.
The effect of deposition temperature on the structural and optical properties of amorphous hydrogenated silicon (a-Si:H) thin films deposited by plasma-enhanced chemical vapour deposition (PECVD) from silane diluted with hydrogen was under study. The series of thin films deposited at the deposition temperatures of 50–200°C were inspected by XRD, Raman spectroscopy and UV Vis spectrophotometry. All samples were found to be amorphous with no presence of the crystalline phase. Ordered silicon hydride regions were proved by XRD. Raman measurement analysis substantiated the results received from XRD showing that with increasing deposition temperature silicon-silicon bond-angle fluctuation decreases. The optical characterization based on transmittance spectra in the visible region presented that the refractive index exhibits upward trend with increasing deposition temperature, which can be caused by the densification of the amorphous network. We found out that the scale factor of the Tauc plot increases with the deposition temperature. This behaviour can be attributed to the increasing ordering of silicon hydride regions. The Tauc band gap energy, the iso-absorption value their difference were not particularly influenced by the deposition temperature. Improvements of the microstructure of the Si amorphous network have been deduced from the analysis.  相似文献   

3.
This letter shows that intrinsic hydrogenated amorphous silicon (a‐Si:H) films deposited by RF magnetron sputtering can provide outstanding passivation of crystalline silicon surfaces, similar to that achieved by plasma enhanced chemical vapour deposition (PECVD). By using a 2% hydrogen and 98% argon gas mixture as the plasma source, 1.5 Ω cm n‐type FZ silicon wafers coated with sputtered a‐Si:H films achieved an effective lifetime of 3.5 ms, comparable to the 3 ms achieved by PECVD (RF and microwave dual‐mode). This is despite the fact that Fourier transform infrared spectroscopy measurements show that sputtering and PECVD deposited films have very different chemical bonding configurations. We have found that film thickness and deposition temperature have a significant impact on the passivation results. Self‐annealing and hydrogen plasma treatment during deposition are likely driving forces for the observed changes in surface passivation. These experimental results open the way for the application of sputtered a‐Si:H to silicon heterojunction solar cells. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
In this work we present a detailed structural of a series of B-doped hydrogenated microcrystalline silicon (μc-Si:H) films deposited by plasma-enhanced chemical vapor deposition (PECVD) and B-doped polycrystalline silicon (poly-Si) films produced by step-by-step laser crystallization process from amorphous silicon. The influence of doping on the structural properties and structural changes during the sequential crystallization processes were monitored by Raman spectroscopy. Unlike μc-Si:H films, that consist of a two-phase mixture of amorphous and ordered Si, partially crystallized sample shows a stratified structure with polycrystalline silicon layer at the top of an amorphous layer. With increasing doping concentration the LO-TO phonon line in poly-Si shift to smaller wave numbers and broadens asymmetrically. The results are discussed in terms of resonant interaction between optical phonons and direct intraband transitions known as a Fano resonance. In μc-Si:H films, on the other hand, the Fano effect is not observed. The increase of doping in μc-Si:H films suppressed the crystalline volume fraction, which leads to an amorphization in the film structure. The structural variation in both μc-Si:H and poly-Si films leads to a change in hydrogen bonding configuration.  相似文献   

5.
侯国付  耿新华  张晓丹  孙建  张建军  赵颖 《中国物理 B》2011,20(7):77802-077802
A series of hydrogenated silicon thin films with varying silane concentrations have been deposited by using very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) method. The deposition process and the silicon thin films are studied by using optical emission spectroscopy (OES) and Fourier transfer infrared (FTIR) spectroscopy, respectively. The results show that when the silane concentration changes from 10% to 1%, the peak frequency of the Si—H stretching mode shifts from 2000 cm - 1 to 2100 cm - 1, while the peak frequency of the Si—H wagging—rocking mode shifts from 650 cm - 1 to 620 cm - 1. At the same time the SiH*/Hα intensity ratio in the plasma decreases gradually. The evolution of the infrared spectra and the optical emission spectra demonstrates a morphological phase transition from amorphous silicon (a-Si:H) to microcrystalline silicon (μc-Si:H). The structural evolution and the μc-Si:H formation have been analyzed based on the variation of Hα and SiH* intensities in the plasma. The role of oxygen impurity during the plasma process and in the silicon films is also discussed in this study.  相似文献   

6.
在室温条件下,以溴乙烷为单体、氢气为载气,用13.56 MHz射频等离子体化学气相淀积方法(RF-PECVD)在硅片衬底上生长了掺溴非晶碳氢薄膜(a-C:Br:H).通过对其进行Raman光谱分析,研究了工作气压对薄膜结构的影响.结果显示:随着气体工作压力从20 Pa下降至5 Pa,样品D峰强度增强,I_D/I_G值逐步由1.18增加至1.36,G峰的位置向高频轻微移动;与此同时,薄膜生长方式逐步转为低能态形式生长,薄膜中sp~2C逐步由链式结构向环式结构转化.  相似文献   

7.
雷青松  吴志猛  耿新华  赵颖  孙健  奚建平 《中国物理》2006,15(12):3033-3038
Hydrogenated silicon (Si:H) thin films for application in solar cells were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170℃. The electrical, structural, and optical properties of the films were investigated. The deposited films were then applied as i-layers for p-i-n single junction solar cells. The current--voltage (I-V) characteristics of the cells were measured before and after the light soaking. The results suggest that the films deposited near the transition region have an optimum properties for application in solar cells. The cell with an i-layer prepared near the transition region shows the best stable performance.  相似文献   

8.
The epitaxial-Si(epi-Si) growth on the crystalline Si(c-Si) wafer could be tailored by the working pressure in plasmaenhanced chemical vapor deposition(PECVD).It has been systematically confirmed that the epitaxial growth at the hydrogenated amorphous silicon(a-Si:H)/c-Si interface is suppressed at high pressure(hp) and occurs at low pressure(1p).The hp a-Si:H,as a purely amorphous layer,is incorporated in the 1p-epi-Si/c-Si interface.We find that:(i) the epitaxial growth can also occur at a-Si:H coated c-Si wafer as long as this amorphous layer is thin enough;(ii) with the increase of the inserted hp layer thickness,lp epi-Si at the interface is suppressed,and the fraction of a-Si:H in the thin films increases and that of c-Si decreases,corresponding to the increasing minority carrier lifetime of the sample.Not only the epitaxial results,but also the quality of the thin films at hp also surpasses that at lp,leading to the longer minority carrier lifetime of the hp sample than the lp one although they have the same amorphous phase.  相似文献   

9.
Hydrogenated amorphous silicon (a‐Si:H) films were studied using infrared and Raman spectroscopy. We have experimentally found that ratios of Raman scattering cross‐sections for Si–H to Si–Si bonds and for Si–H2 to Si–Si bonds are equal to 0.65 ± 0.07 and 0.25 ± 0.03, respectively. It allows to measure the concentration of hydrogen in a‐Si:H films. The developed approach can be applied for in situ control of hydrogen in a‐Si:H films and also suitable for thin a‐Si:H films on substrates that are opaque in infrared spectral region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Amorphous hydrogenated silicon carbonitride thin films (a-Si:C:N:H), deposited by plasma enhanced chemical vapour deposition (PECVD) using hexamethyldisilazane (HMDSN) as monomer and Ar as feed gas, have been investigated for their structural and optical properties as a function of the deposition RF plasma power, in the range of 100-300 W. The films have been analysed by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), UV-vis-NIR spectrophotometry and atomic force microscopy (AFM). From the analysis of the FT-IR spectra it results that the films become more amorphous and inorganic as RF plasma power increases. The incorporation of oxygen in the deposited layers, mainly due to the atmospheric attack, has been evaluated by XPS and FT-IR spectroscopy. Reflectance/transmittance spectra, acquired in the range of 200-2500 nm, allow to descrive the film absorption edge for interband transitions. A relationship between the optical energy band gap, deduced from the absorption coefficient curve, and the deposition RF plasma power has been investigated. The reduction of the optical energy gap from 3.85 to 3.69 eV and the broadening of the optical absorption tail with RF plasma power increasing from 100 to 300 W are ascribed to the growth of structural disorder, while the increase of the refractive index, evaluated at 630 nm, is attributed to a slight densification of the film. The AFM analysis confirms the amorphous character of the films and shows how the deposited layers become rougher when RF plasma power increases. The wettability of the film has been studied and related to the chemical composition and to the morphology of the deposited layers.  相似文献   

11.
Hydrogenated amorphous silicon carbide (a-Si1-xCx:H) films were deposited by RF plasma enhanced chemical vapor deposition (PECVD) and subsequently annealed in N2 atmosphere at different temperatures. Systematic investigations of the deposition temperature and annealing effect on the film's properties, including film thicknesses, optical bandgap, refractive indexes, absorption coefficient (α), chemical bond configurations, stoichiometry and crystalline structures, were performed using ellipsometry, FTIR absorbance spectroscopy, Raman spectroscopy, XPS, and XRD. All of the results indicate that the structural and optical properties of the a-Si1-xCx:H film can be effectively engineered by proper annealing conditions. Moreover, molecular vibrational level equation was introduced to explain the peak shift detected by FTIR and Raman spectroscopy.  相似文献   

12.
Jun Xie 《哲学杂志》2013,93(11):820-832
Abstract

Ultrathin hydrogenated amorphous carbon (a-C:H) films deposited by plasma-enhanced chemical vapor deposition (PECVD) and hydrogen-free amorphous carbon (a-C) films of similar thickness deposited by filtered cathodic vacuum arc (FCVA) were subjected to rapid thermal annealing (RTA). Cross-sectional transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) were used to study the structural stability of the films. While RTA increased the thickness of the intermixing layer and decreased the sp3 content of the a-C:H films, it did not affect the thickness or the sp3 content of the a-C films. The superior structural stability of the FCVA a-C films compared with PECVD a-C:H films, demonstrated by the TEM and EELS results of this study, illustrates the high potential of these films as protective overcoats in applications where rapid heating is critical to the device functionality and performance, such as heat-assisted magnetic recording.  相似文献   

13.
We report results obtained from FTIR and TEM measurements carried out on silicon thin films deposited by plasma-enhanced chemical vapor deposition (PECVD) from silane diluted with hydrogen. The hydrogen content, the microstructure factor, the mass density and the volume per Si-H vibrating dipoles were determined as a function of the hydrogen dilution. Hydrogen dilution of silane results in an inhomogeneous growth during which the material evolves from amorphous hydrogenated silicon (a-Si:H) to microcrystalline hydrogenated silicon (μc-Si:H). With increasing dilution the transition from amorphous to microcrystalline phase appears faster and the average mass density of the films decreases. The μc-Si:H films are mixed-phase void-rich materials with changing triphasic volume fractions of crystalline and amorphous phases and voids. Different bonding configurations of vibrating Si-H dipoles were observed in the a-Si:H and μc-Si:H. The bonding of hydrogen to silicon in the void- and vacancy-dominated mechanisms of network formation is discussed.  相似文献   

14.
镶嵌有纳米硅的氮化硅薄膜键合特性分析   总被引:3,自引:2,他引:1  
采用螺旋波等离子体化学气相沉积(HWPCVD)技术制备了非化学计量比的氢化氮化硅薄膜,对所沉积样品及氮气环境中920 ℃退火样品的微观结构及键合特性进行了分析。Raman散射结果表明,薄膜中过量硅以非晶纳米粒子形式存在,退火样品呈现纳米晶硅和氮化硅的镶嵌结构。红外吸收和可见光吸收特性比较结果显示,薄膜样品的微观结构依赖于化学计量比以及退火过程,硅含量较低样品因高的键合氢含量而表现出低的纳米硅表面缺陷态密度;退火过程将引起Si—H和N—H键合密度的减少,因晶态纳米颗粒的形成,退火样品表现出更高的结构无序度。  相似文献   

15.
Hydrogenated nanocrystalline silicon (nc-Si:H) thin films were fabricated by plasma enhanced chemical vapor deposition under the various negative substrate bias voltages with hydrogen as a diluent of silane. The microstructure and optical properties of nc-Si:H thin films were studied by Raman scattering spectroscopy, X-ray diffraction (XRD), transmission electron microscopy, and optical transmission spectroscopy. Raman spectra and XRD pattern reveal that applying negative bias voltages at the moderate level favors the enhancement of crystalline volume fraction, increase of crystallite sizes and decrease of residual stress. We also demonstrated that the negative direct current bias can be used to modulate the volume fraction of voids, refractive index, absorption coefficient, compactness and ordered degree of nc-Si:H films. It is found that the film deposited at −80 V shows not only high crystallinity, size of crystallite, and static index n0 but also low residual stress and volume fraction of voids. Furthermore, the microstructural evolution mechanism of nc-Si:H thin films prepared at different bias voltages is tentatively explored.  相似文献   

16.
Silicon grain arrays were prepared using a pattern crystallization technique of pulsed KrF excimer laser irradiation. The precursor material was hydrogenated amorphous silicon (a-Si:H) thin films deposited on single crystal Si wafers by plasma-enhanced chemical vapor deposition. It was shown that Si grains with a uniform size and a well-defined periodicity embedded in the a-Si:H matrix were obtained by this simple technique. The grain size was less than 2 μm. Relativly strong photo-luminescence with two peaks at 720 and 750 nm was observed at room temperature. We expect to reduce Si grain sizes by optimizing the growth conditions of a-Si:H thin films and controlling the temperature distribution in the film during laser irradiation. Received: 21 November 2000 / Accepted: 12 December 2000 / Published online: 9 February 2001  相似文献   

17.
A series of phosphorous-doped hydrogenated amorphous silicon films (a-Si:H) were crystallized using step-by-step laser crystallization process. The structural changes during the sequential crystallization process were detected by Raman measurements. The dehydrogenation was monitored by measuring the Si-H local vibrational modes using Raman spectroscopy and hydrogen effusion measurements. Interestingly, hydrogen bonding is affected by doping of the amorphous material. The influence of doping concentrations, thus the Fermi energy on electronic properties has been investigated employing secondary ion mass spectroscopy (SIMS), dark-conductivity- and Hall-effect measurements. The results from hydrogen effusion are consistent with the results obtained from Raman spectroscopy, Hall-effect- and dark-conductivity measurements.  相似文献   

18.
Hydrogenated amorphous silicon nitride (a-SiN:H) films were deposited on flexible polyethylene terephthalate substrates at temperature as low as 100 °C by hot-wire chemical vapor deposition using SiH4, H2 and NH3 precursors. Field emission scanning emission microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy and small angle X-ray scattering were employed to study structural and microstructural properties of a-SiN:H films. The rms surface roughness increased with increase of positive bias to substrate. Intermediate range order, porosity and interface inhomogeneity in amorphous of a-SiN:H films evaluated by acoustic and optical phonon of silicon network, Guinier plot and correlated length from Raman and SAXS characterizations. The fractal behavior of a-SiN:H domains approached the perfect symmetry and the intermediate range order of a-SiN:H films deteriorate with increase of the positive substrate bias. Both correlation length and void size of the a-SiN:H amorphous domain increased with increase of the substrate bias from 0 to +200 V.  相似文献   

19.
Cr-containing hydrogenated amorphous carbon (Cr-C:H) films were deposited on silicon substrates using a DC reactive magnetron sputtering with Cr target in an Ar and C2H2 gas mixture. The composition, bond structure, mechanical hardness and elastic recovery of the films were characterized using energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and nano-indentation. The film tribological behavior was also studied by a ball-on-disc tribo-tester. The results showed that the films deposited at low C2H2 flow rate (<10 sccm) presented a feature of composite Cr-C:H structure, which consisted of hard brittle chromium carbide phases and amorphous hydrocarbon phase, and thus led to the observed low elastic recovery and poor wear resistance of the films. However, the film deposited at high C2H2 flow rate (40 sccm) was found to present a typical feature of polymer-like a-C:H structure containing a large amount of sp3 C-H bonds. As a result, the film revealed a high elastic recovery, and thus exhibited an excellent wear resistance.  相似文献   

20.
We report the Raman analysis of both as‐deposited and annealed amorphous silicon ruthenium thin films embedded with nanocrystals. In the Raman spectra of as‐deposited films, variations of TO peak indicate a short‐range disorder of a‐Si network with an increase of Ru concentration. The substitutional Ru atoms lower the concentration of Si―Si bonds and suppress the intensity of TO peak, but have less effect on TA, LA and LO peaks. In the Raman spectra of annealed films, characteristic parameters confirm the upgrade of a‐Si network at a low annealing temperature and the emergence of both ruthenium silicide and silicon nanocrystals at 700 °C. Although ruthenium silicide nanocrystals present no Raman peaks in the Raman spectra of as‐deposited samples, the non‐linear variations of intensity ratios ILA + LO/ITO and ITA/ITO still suggest their existence, and these nanocrystals are subsequently verified by high‐resolution transmission electron microscopy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号