首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The transition of disc‐like chromium hydroxide nanomaterials to chromium oxide nanomaterials has been studied by hot‐stage Raman spectroscopy. The structure and morphology of α‐CrO(OH) synthesised using hydrothermal treatment were confirmed by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The Raman spectrum of α‐CrO(OH) is characterised by two intense bands at 823 and 630 cm−1 attributed to ν1 CrIII O symmetric stretching mode and the band at 1179 cm−1 attributed to CrIII OH δ deformation modes. No bands are observed above 3000 cm−1. The absence of characteristic OH stretching vibrations may be due to short hydrogen bonds in the α‐CrO(OH) structure. Upon thermal treatment of α‐CrO(OH), new Raman bands are observed at 599, 542, 513, 396, 344 and 304 cm−1, which are attributed to Cr2O3. This hot‐stage Raman study shows that the transition of α‐CrO(OH) to Cr2O3 occurs before 350 °C. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The surface‐enhanced Raman scattering (SERS) of sodium alginates and their hetero‐ and homopolymeric fractions obtained from four seaweeds of the Chilean coast was studied. Alginic acid is a copolymer of β‐D ‐mannuronic acid (M) and α‐L guluronic acid (G), linked 1 → 4, forming two homopolymeric fractions (MM and GG) and a heteropolymeric fraction (MG). The SERS spectra were registered on silver colloid with the 632.8 nm line of a He Ne laser. The SERS spectra of sodium alginate and the polyguluronate fraction present various carboxylate bands which are probably due to the coexistence of different molecular conformations. SERS allows to differentiate the hetero‐ and homopolymeric fractions of alginic acid by characteristic bands. In the fingerprint region, all the poly‐D ‐mannuronate samples present a band around 946 cm−1 assigned to C O stretching, and C C H and C O H deformation vibrations, a band at 863 cm−1 assigned to deformation vibration of β‐C1 H group, and one at 799–788 cm−1 due to the contributions of various vibration modes. Poly‐L ‐guluronate spectra show three characteristic bands, at 928–913 cm−1 assigned to symmetric stretching vibration of C O C group, at 890–889 cm−1 due to C C H, skeletal C C, and C O vibrations, and at 797 cm−1 assigned to α C1 H deformation vibration. The heteropolymeric fractions present two characteristic bands in the region with the more important one being an intense band at 730 cm−1 due to ring breathing vibration mode. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Fourier‐transform infrared (FT‐IR), Raman (RS), and surface‐enhanced Raman scattering (SERS) spectra of β‐hydroxy‐β‐methylobutanoic acid (HMB), L ‐carnitine, and N‐methylglycocyamine (creatine) have been measured. The SERS spectra have been taken from species adsorbed on a colloidal silver surface. The respective FT‐IR and RS band assignments (solid‐state samples) based on the literature data have been proposed. The strongest absorptions in the FT‐IR spectrum of creatine are observed at 1398, 1615, and 1699 cm−1, which are due to νs(COOH) + ν(CN) + δ(CN), ρs(NH2), and ν(C O) modes, respectively, whereas those of L ‐carnitine (at 1396/1586 cm−1 and 1480 cm−1) and HMB (at 1405/1555/1585 cm−1 and 1437–1473 cm−1) are associated with carboxyl and methyl/methylene group vibrations, respectively. On the other hand, the strongest bands in the RS spectrum of HMB observed at 748/1442/1462 cm−1 and 1408 cm−1 are due to methyl/methylene deformations and carboxyl group vibrations, respectively. The strongest Raman band of creatine at 831 cm−1w(R NH2)) is accompanied by two weaker bands at 1054 and 1397 cm−1 due to ν(CN) + ν(R NH2) and νs(COOH) + ν(CN) + δ(CN) modes, respectively. In the case of L ‐carnitine, its RS spectrum is dominated by bands at 772 and 1461 cm−1 assigned to ρr(CH2) and δ(CH3), respectively. The analysis of the SERS spectra shows that HMB interacts with the silver surface mainly through the  COO, hydroxyl, and  CH2 groups, whereas L ‐carnitine binds to the surface via  COO and  N+(CH3)3 which is rarely enhanced at pH = 8.3. On the other hand, it seems that creatine binds weakly to the silver surface mainly by  NH2, and C O from the  COO group. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Many minerals based upon antimonite and antimonate anions remain to be studied. Most of the bands occur in the low wavenumber region, making the use of infrared spectroscopy difficult. This problem can be overcome by using Raman spectroscopy. The Raman spectra of the mineral klebelsbergite Sb4O4(OH)2(SO4) were studied and related to the structure of the mineral. The Raman band observed at 971 cm−1 and a series of overlapping bands are observed at 1029, 1074, 1089, 1139 and 1142 cm−1 are assigned to the SO42−ν1 symmetric and ν3 antisymmetric stretching modes, respectively. Two Raman bands are observed at 662 and 723 cm−1, which are assigned to the Sb O ν3 antisymmetric and ν1 symmetric stretching modes, respectively. The intense Raman bands at 581, 604 and 611 cm−1 are assigned to the ν4 SO42− bending modes. Two overlapping bands at 481 and 489 cm−1 are assigned to the ν2 SO42− bending mode. Low‐intensity bands at 410, 435 and 446 cm−1 may be attributed to O Sb O bending modes. The Raman band at 3435 cm−1 is attributed to the O H stretching vibration of the OH units. Multiple Raman bands for both SO42− and Sb O stretching vibrations support the concept of the non‐equivalence of these units in the klebelsbergite structure. It is proposed that the two sulfate anions are distorted to different extents in the klebelsbergite structure. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Raman spectroscopy complemented by infrared spectroscopy was used to characterise both gallium oxyhydroxide (α‐GaO(OH)) and gallium oxide (β‐Ga2O3) nanorods synthesised with and without the surfactants using a soft chemical methodology at low temperatures. Nano‐ to micro‐sized gallium oxyhydroxide and gallium oxide materials were characterised and analysed by both X‐ray diffraction and Raman spectroscopy. Rod‐like GaO(OH) crystals with average length of ∼2.5 µm and width of 1.5 µm were obtained. Upon thermally treating gallium oxyhydroxide GaO(OH) to 900 °C, β‐Ga2O3 was synthesised retaining the initial GaO(OH) morphology. Raman spectroscopy has been used to study the structure of nanorods of GaO(OH) and Ga2O3 crystals. Raman spectroscopy shows bands characteristic of GaO(OH) at 950 and ∼1000 cm−1 attributed to Ga OH deformation modes. Bands at 261, 275, 433 and 522 cm−1 are assigned to vibrational modes involving Ga OH units. Bands observed at 320, 346, 418 and 472 cm−1 are assigned to the deformation modes of Ga2O6 octahedra. Two sharp infrared bands at 2948 and 2916 cm−1 are attributed to the GaO(OH) symmetric stretching vibrations. Raman spectroscopy of Ga2O3 provides bands at 630, 656 and 767 cm−1 which are assigned to the bending and stretching of GaO4 units. Raman bands at 417 and 475 cm−1 are attributed to the symmetric stretching modes of GaO2 units. The Raman bands at 319 and 347 cm−1 are assigned to the bending modes of GaO2 units. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Raman spectroscopy was used to study the mineral bottinoite and a comparison with the Raman spectra of brandholzite was made. An intense sharp Raman band at 618 cm−1 is attributed to the SbO symmetric stretching mode. The low intensity band at 735 cm−1 is ascribed to the SbO antisymmetric stretching vibration. Low intensity Raman bands were found at 501, 516 and 578 cm−1. Four Raman bands observed at 1045, 1080, 1111 and 1163 cm−1 are assigned to δ SbOH deformation modes. A complex pattern resulting from the overlapping band of the water and hydroxyl units is observed. Raman bands are observed at 3223, 3228, 3368, 3291, 3458 and 3510 cm−1. The first two Raman bands are assigned to water stretching vibrations. The two higher wavenumber Raman bands observed at 3466 and 3552 cm−1 and two infrared bands at 3434 and 3565 cm−1 are assigned to the stretching vibrations of the hydroxyl units. Observed Raman and infrared bands are connected with O H···O hydrogen bonds and their lengths 2.72, 2.79, 2.86, 2.88 and 3.0 Å (Raman) and 2.73, 2.83 and 3.07 Å (infrared). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The mineral wheatleyite has been synthesised and characterised by Raman spectroscopy complimented with infrared spectroscopy. Two Raman bands at 1434 and 1470 cm−1 are assigned to the ν(C O) stretching mode and implies two independent oxalate anions. Two intense Raman bands observed at 904 and 860 cm−1 are assigned to the ν(C C) stretching mode and support the concept of two non‐equivalent oxalate units in the wheatleyite structure. Two strong bands observed at 565 and 585 cm−1 are assigned to the symmetric CCO in plane bending modes. The Raman band at 387 cm−1 is attributed to the CuO stretching vibration and the bands at 127 and 173 cm−1 to OCuO bending vibrations. A comparison is made with Raman spectra of selected natural oxalate bearing minerals. Oxalates are markers or indicators of environmental events. Oxalates are readily determined by Raman spectroscopy. Thus, deterioration of works of art, biogeochemical cycles, plant metal complexation, the presence of pigments and minerals formed in caves can be analysed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Raman and infrared spectra of calcurmolite were recorded and interpreted from the uranium and molybdenum polyhedra, water molecules and hydroxyls point of view. U O bond lengths in uranyl and Mo O bond lengths in MoO6 octahedra were calculated and O H…O bond lengths were inferred from the spectra. The mineral calcurmolite is characterised by bands assigned to the vibrations of the UO2 units. These units provide intense Raman bands at 930, 900 and 868 and 823 cm−1. These bands are attributed to the anti‐symmetric and symmetric stretching modes of the UO2 units, respectively. Raman bands at 794, 700, 644, 378 and 354 cm−1 are attributed to vibrations of the MoO4 units. The bands at 693 and 668 cm−1 are assigned to the anti‐symmetric and symmetric Ag modes of the terminal MO2 units. Similar bands are observed at 797 and 773 cm−1 for koechlinite and 798 and 775 cm−1 for lindgrenite. It is probable that some of the bands in the low wavenumber region are attributable to the bending modes of MO2 units. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
10.
The kaolinite‐like phyllosilicate minerals bismutoferrite BiFe3+2Si2O8(OH) and chapmanite SbFe3+2Si2O8(OH) have been studied by Raman spectroscopy and complemented with infrared spectra. Tentatively interpreted spectra were related to their molecular structure. The antisymmetric and symmetric stretching vibrations of the Si O Si bridges, δ SiOSi and δ OSiO bending vibrations, ν (Si Oterminal) stretching vibrations, ν OH stretching vibrations of hydroxyl ions, and δ OH bending vibrations were attributed to the observed bands. Infrared bands in the range 3289–3470 cm−1 and Raman bands in the range 1590–1667 cm−1 were assigned to adsorbed water. O H···O hydrogen‐bond lengths were calculated from the Raman and infrared spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The mineral marthozite, a uranyl selenite, has been characterised by Raman spectroscopy at 298 K. The bands at 812 and 797 cm−1 were assigned to the symmetric stretching modes of the (UO2)2+ and (SeO3)2− units, respectively. These values gave the calculated U O bond lengths in uranyl of 1.799 and/or 1.814 Å. Average U O bond length in uranyl is 1.795 Å, inferred from the X‐ray single crystal structure analysis of marthozite by Cooper and Hawthorne. The broad band at 869 cm−1 was assigned to the ν3 antisymmetric stretching mode of the (UO2)2+ (calculated U O bond length 1.808 Å). The band at 739 cm−1 was attributed to the ν3 antisymmetric stretching vibration of the (SeO3)2− units. The ν4 and the ν2 vibrational modes of the (SeO3)2− units were observed at 424 and 473 cm−1. Bands observed at 257, and 199 and 139 cm−1 were assigned to OUO bending vibrations and lattice vibrations, respectively. O H···O hydrogen bond lengths were inferred using Libowiztky's empirical relation. The infrared spectrum of marthozite was studied for complementation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Raman spectroscopy was used to study the molecular structure of a series of selected rare earth (RE) silicate crystals including Y2SiO5 (YSO), Lu2SiO5 (LSO), (Lu0.5Y0.5)2SiO5 (LYSO) and their ytterbium‐doped samples. Raman spectra show resolved bands below 500 cm−1 region assigned to the modes of SiO4 and oxygen vibrations. Multiple bands indicate the nonequivalence of the RE O bonds and the lifting of the degeneracy of the RE ion vibration. Low intensity bands below 500 cm−1 are an indication of impurities. The (SiO4)4− tetrahedra are characterized by bands near 200 cm−1 which show a separation of the components of ν4 and ν2, in the 500–700 cm−1 region which are attributed to the distorting bending vibration and in the 880–1000 cm−1 region which are attributed to the symmetric and antisymmetric stretching vibrational modes. The majority of the bands in the 300–610 cm−1 region of Re2SiO5 were found to arise from vibrations involving both Si and RE ions, indicating that there is considerable mixing of Si displacements with Si O bending modes and RE O stretching modes. The Raman spectra of RE silicate crystals were analyzed in terms of the molecular structure of the crystals, which enabled separation of the bands attributed to distinct vibrational units. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
The mineral gerstleyite is described as a sulfosalt as opposed to a sulfide. This study focuses on the Raman spectrum of gerstleyite Na2(Sb,As)8S13·2H2O and makes a comparison with the Raman spectra of other common sulfides including stibnite, cinnabar and realgar. The intense Raman bands of gerstleyite at 286 and 308 cm−1 are assigned to the SbS3E antisymmetric and A1 symmetric stretching modes of the SbS3 units. The band at 251 cm−1 is assigned to the bending mode of the SbS3 units. The mineral stibnite also has basic structural units of Sb2S3 and SbS3 pyramids with C3v symmetry. Raman bands of stibnite Sb2S3 at 250, 296, 372 and 448 cm−1 are assigned to Sb S stretching vibrations and the bands at 145 and 188 cm−1 to S Sb S bending modes. The Raman band for cinnabar HgS at 253 cm−1 fits well with the assignment of the band for gerstleyite at 251 cm−1 to the S Sb S bending mode. Raman bands in similar positions are observed for realgar AsS and orpiment As2S3. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Raman spectra of brandholzite Mg[Sb2(OH)12]·6H2O were studied, complemented with infrared spectra, and related to the structure of the mineral. An intense Raman sharp band at 618 cm−1 is attributed to the SbO symmetric stretching mode. The low‐intensity band at 730 cm−1 is ascribed to the SbO antisymmetric stretching vibration. Low‐intensity Raman bands were found at 503, 526 and 578 cm−1. Corresponding infrared bands were observed at 527, 600, 637, 693, 741 and 788 cm−1. Four Raman bands observed at 1043, 1092, 1160 and 1189 cm−1 and eight infrared bands at 963, 1027, 1055, 1075, 1108, 1128, 1156 and 1196 cm−1 are assigned to δ SbOH deformation modes. A complex pattern resulting from the overlapping band of the water and hydroxyl units is observed. Raman bands are observed at 3240, 3383, 3466, 3483 and 3552 cm−1; infrared bands at 3248, 3434 and 3565 cm−1. The Raman bands at 3240 and 3383 cm−1 and the infrared band at 3248 cm−1 are assigned to water‐stretching vibrations. The two higher wavenumber Raman bands observed at 3466 and 3552 cm−1 and two infrared bands at 3434 and 3565 cm−1 are assigned to the stretching vibrations of the hydroxyl units. Observed Raman and infrared bands in the OH stretching region are associated with O‐H···O hydrogen bonds and their lengths 2.72, 2.79, 2.86, 2.88 and 3.0 Å (Raman) and 2.73, 2.83 and 3.07 Å (infrared). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The adsorption behaviour of ammonium ions and the structural features of layered proton trititanate were characterised by using Raman spectroscopy, X‐ray diffraction (XRD) and transmission electron microscopy. It revealed that the intensity of the Raman band at 309 cm−1, assigned to very long Ti O bonds (0.22 nm), reduced, whereas the band at 890 cm−1, assigned to very short Ti O bonds (0.17 nm), increased slightly after the adsorption of ammonium ions (NH4+). The adsorption of ammonium ions enlarged the interlayer distance of the (200) plane. Ammonium ions were located at the corner of the TiO6 octahedral slabs. This was further confirmed by XRD, with an increased intensity of the (201 ) plane being observed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Raman spectra of the Cl3CCHO/CCl4 and Cl3CCHO/C6D12 binary systems were recorded as a function of the mole fraction. Features originating from self‐aggregates of chloral (trichloroethanal, trichloroacetaldehyde—TCAA) molecules were detected in different spectral regions. The most pronounced changes were observed in the vicinity of the ν(CO) and ν(C H) stretching vibration bands. Using two‐dimensional correlation spectroscopy (2D‐COS), evolving‐factor analysis (EFA) and multivariate curve resolution (MCR), dimer bands were identified, and their positions were determined. The ν(C H) stretching vibration band in dimers was blue‐shifted by nearly 18 cm−1, whereas the ν(CO) dimer band was red‐shifted by more than 5 cm−1. For these bands, the observed shifts were accompanied by an almost twofold change in the bandwidth, from approximately 19 and 6 cm−1 for dilute solutions (x = 0.05) to 36.6 and 11.5 cm−1, respectively, in pure TCAA. The formation of dimers was confirmed by multivariate analysis of the Raman spectra of chloral recorded as a function of temperature. Analogous analysis of dichloroacetyl chloride (DCAC) spectra gave an 8.9 cm−1 blue shift for the ν(C H) vibration band and − 5.5/− 10.1 cm−1 shifts for the ν(CO) stretching vibrations of the two conformers present. To facilitate the interpretation of experimental findings, the optimized geometries and vibrational wavenumbers of the Cl3CCHO/HCl2CCClO molecules and (Cl3CCHO)2/(HCl2CCClO)2 dimers were calculated at the B3LYP/6‐311 + + G(3df,3pd) level. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A comparative study of molecular structures of five L ‐proline (L ‐Pro) phosphonodipeptides: L ‐Pro‐NH‐C(Me,Me)‐PO3H2 (P1), L ‐Pro‐NH‐C(Me,iPr)‐PO3H2 (P2), L ‐Pro‐L ‐NH‐CH(iBu)‐PO3H2 (P3), L ‐Pro‐L ‐NH‐CH(PA)‐PO3H2 (P4) and L ‐Pro‐L ‐NH‐CH(BA)‐PO3H2 (P5) has been carried out using Raman and absorption infrared techniques of molecular spectroscopy. The interpretation of the obtained spectra has been supported by density functional theory calculations (DFT) at the B3LYP; 6–31 + + G** level using Gaussian 2003 software. The surface‐enhanced Raman scattering (SERS) on Ag‐sol in aqueous solutions of these phosphonopeptides has also been investigated. The surface geometry of these molecules on a silver colloidal surface has been determined by observing the position and relative intensity changes of the Pro ring, amide, phosphonate and so‐called spacer (−R) groups vibrations of the enhanced bands in their SERS spectra. Results show that P4 and P5 adsorb onto the silver as anionic molecules mainly via the amide bond (∼1630, ∼1533, ∼1248, ∼800 and ∼565 cm−1), Pro ring (∼956, ∼907 and ∼876 cm−1) and carboxylate group (∼1395 and ∼909 cm−1). Coadsorption of the imine nitrogen atom and PO group with the silver surface, possibly by formation of a weaker interaction with the metal, is also suggested by the enhancement of the bands at 1158 and 1248 cm−1. P1, P2 and P3 show two orientations of their main chain on the silver surface resulting from different interactions of the  C CH3,  NH and  CONH fragments with this surface. Bonding to the Ag surface occurs mainly through the imino atom (1166 cm−1) for P2, while for P1 and P3 it occurs via the methyl group(s) (1194–1208 cm−1). The amide group functionality (CONH) is practically not involved in the adsorption process for P1 and P2, whereas the Cs P bonds do assist in the adsorption. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The synthesis of sodium hexatitanate from sodium trititanate was characterized by Raman spectroscopy, X‐ray diffraction (XRD) and high‐resolution transmission electron microscopy (HRTEM). The structural evolution from trititanate to hexatitanate was studied using Raman spectra, XRD and HRTEM techniques. It was found that the Raman bands at 279 cm−1 corresponding to very long Ti O bonds and at 883 cm−1 corresponding to the very short Ti O bonds decrease in intensity and finally disappear during the transition from sodium trititanate to sodium hexatitanate. The band at 922 cm−1 corresponding to an intermediate‐length Ti O bond was observed to become stronger with the increase in temperature, indicating that there is no terminal oxygen atom in the crystal structure of Na2Ti6O13 and that all the oxygen atoms become linearly coordinated by two titanium atoms. Furthermore, the TiO6 octahedron in Na2Ti6O13 are more regular because the very long (2.2 Å) or very short (1.7 Å) Ti O bonds disappear. It is revealed that the phase transition from trititanate to hexatitanate is a step‐by‐step slipping process of the TiO6 octahedral slabs with the loss of sodium cations, and a new phase with formula Na1.5H0.5Ti3O7 has been discovered as an intermediate phase to interlink Na2Ti3O7 and Na2Ti6O13. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Raman spectroscopy, complemented with infrared spectroscopy, was used to study the uranyl carbonate mineral voglite. The mineral has the formula Ca2Cu2+ [(UO2)(CO3)3](CO3)6H2O, and bands attributed to these vibrating units are readily identified in the Raman spectrum. Symmetric stretching modes at 836 and 1094 cm−1 are assigned to ν1(UO2)2+ and ν1(CO3)2− units, respectively. The ν3 antisymmetric stretching modes of (UO2)2+ are not observed in the Raman spectrum but may be readily observed in the infrared spectrum at 898 cm−1. The ν3 antisymmetric stretching mode of (CO3)2− is observed in the Raman spectrum at 1369 cm−1 as a low intensity band as is also the ν3(CO3)2− infrared modes at 1362, 1425, 1509 and 1566 cm−1. No ν2(CO3)2− Raman bending modes are observed for voglite. The Raman band at 749 cm−1 and the two infrared bands at 747 and 709 cm−1 are assigned to the ν4(CO3)2− bending modes. U O bond and O H…O bond lengths in the structure of voglite were inferred from the infrared and Raman spectra. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Raman spectroscopy was used to distinguish the individual members of the two feldspar subgroups. All feldspars were found to exhibit a characteristic, intense line between 500 and 515 cm−1 which is attributed to a mixed Si O Si (or Si O Al) bending/stretching mode. However, discrimination between the related members within each subgroup relies on the change in frequencies and band widths which occur in the external lattice modes and in the Si O stretching region. Spectra were recorded from single crystals and powders and demonstrate that the laser Raman microprobe can provide non-destructive and rapid identification of feldspars on the microscopic scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号