首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Micro‐ and nano‐electromechanical systems (MEMS and NEMS) fabricated in 3 C‐SiC are receiving particular attention thanks to the material physical properties: its wide band gap (2.3 eV), its ability to operate at high temperatures, its mechanical strength and its inertness to the exposure in corrosive environments. However, high residual stress (which is normally generated during the hetero‐epitaxial growth process) makes the use of 3 C‐SiC in Si‐based MEMS fabrication techniques very limited leading to a failure of micro‐machined/sensor structures. In this paper, micro‐Raman characterizations and finite‐element modeling (FEM) of microstructures realized on poly and single‐crystal (100) 3 C‐SiC/Si films are performed. Transverse optical (TO) Raman mode analysis reveals the stress relaxation on the free standing structure (796.5 cm−1) respect to the stressed unreleased region (795.7 cm−1). Also, microstructures as cantilever, bridge and planar rotating probe show an intense stress field located around the undercut region. Here, the TO Raman mode undergoes an intense shift, up to 2 cm−1, ascribed to the modification of the Raman stress tensor. Indeed, the generalized axial regime, described by diagonal components of the Raman stress tensor, cannot be applied in this region. Raman maps analysis and FEM simulations show the ‘activation’ of the shear stress, i.e. non‐diagonal components of the stress tensor. The stress‐Raman modes shift correlation, in the case of fully non‐diagonal stress tensors, has been investigated. The aim of future works will be to minimize the stress field generation and the defects density within the epitaxial layer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
We report resonant Raman scattering of MoS2 layers comprising of single, bi, four and seven layers, showing a strong dependence on the layer thickness. Indirect band gap MoS2 in bulk becomes a direct band gap semiconductor in the monolayer form. New Raman modes are seen in the spectra of single‐ and few‐layer MoS2 samples which are absent in the bulk. The Raman mode at ~230 cm−1 appears for two, four and seven layers. This mode has been attributed to the longitudinal acoustic phonon branch at the M point (LA(M)) of the Brillouin zone. The mode at ~179 cm−1 shows asymmetric character for a few‐layer sample. The asymmetry is explained by the dispersion of the LA(M) branch along the Γ‐M direction. The most intense spectral region near 455 cm−1 shows a layer‐dependent variation of peak positions and relative intensities. The high energy region between 510 and 645 cm−1 is marked by the appearance of prominent new Raman bands, varying in intensity with layer numbers. Resonant Raman spectroscopy thus serves as a promising non invasive technique to accurately estimate the thickness of MoS2 layers down to a few atoms thick. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
B‐implanted Ge samples have been investigated by micro‐Raman spectroscopy under different excitation wavelengths, with the aim of gaining insights about the B distribution at different depths beneath the sample surface. The intensities, observed under the different excitation wavelengths, of the B–Ge Raman peak at about 545 cm−1, which is due to the local vibrational mode of the substitutional B atoms in the Ge matrix, have been used to calibrate the optical absorption lengths in B‐implanted Ge. Then, by using these calibrated values, a very sharp correlation between the spectral features of the Ge–Ge Raman peak at ~300 cm−1 and the content of substitutional B atoms has been derived. Accordingly, a non‐destructive approach, based on micro‐Raman spectroscopy under different excitation wavelengths, is presented to estimate, at least at the lowest depths, the carrier concentration profiles from the spectral features of the Ge–Ge Raman peak. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
We report observations of single‐molecule detection of thionine and its dynamic interactions on aggregated gold nanoparticle clusters using surface enhanced Raman scattering (SERS). Spectral intensities were found to be independent of the size of Au nanoparticles studied (from 17 to 80 nm) at thionine concentration below 10−12 M or at single‐molecule concentration levels. Raman line separations and, in particular, spectral fluctuations and blinking were also observed, suggesting temporal changes in single molecular motion and/or arrangements of thionine on Au nanoparticle surfaces. In contrast, by using dispersed Au nanoparticles, only ensemble SERS spectra could be observed at relatively high concentrations (> 10−8 M thionine), and spectral intensities varied with the size of Au nanoparticles. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
The distribution profile of Al implanted in crystalline Ge has been investigated by micro‐Raman spectroscopy. Using different excitation laser lines, corresponding to different optical penetration depths, the Al concentration at different depths beneath the sample surface has been studied. We have found a strong correlation between the intensity of the Al–Ge Raman peak at ~370 cm−1, which is due to the local vibrational mode of substitutional Al atoms, and the carrier concentration profile, obtained by the spreading resistance profiling analysis. A similar connection has been also observed for both shape and position of the Ge–Ge Raman peak at ~300 cm−1. According to these experimental findings, we propose here a fast and nondestructive method, based on micro‐Raman spectroscopy under different excitation wavelengths, to estimate the carrier concentration profiles in Al‐implanted Ge. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A comparative, temperature‐dependent (80–500 K at 5 K intervals), micro‐Raman spectroscopic study of 300 and 50 nm diameter ceramic BaTiO3 nanoparticles was carried out with the purpose of elucidating the nanoparticle size effect on the temperature dependence of the polar and non‐polar phonons. A method for calibrating Raman intensities, along with an iterative spectral fitting algorithm, is proposed for concurrent Raman band position and intensity analysis, increasing the analytical abilities of single temperature point Raman spectroscopy. The 300 nm particles exhibit all three phase transitions, whereas the 50 nm particles do not show evidence of these phase transitions in the same temperature range. The Curie temperature appears to be a phonon converging point, irrespective of the phonon symmetry. An attempt was made to qualitatively relate the temperature‐dependent Raman spectra to complimentary non‐spectroscopic methods, such as heat capacity and X‐ray diffraction studies. The study proves that the temperature‐dependent behavior of the polar phonon, 265 cm−1, can be utilized as a sensitive phase transition probe. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The single‐crystal Raman spectra of minerals brandholzite and bottinoite, formula M[Sb(OH)6]2•6H2O, where M is Mg+2 and Ni+2, respectively, and the non‐aligned Raman spectrum of mopungite, formula Na[Sb(OH)6], are presented for the first time. The mixed metal minerals comprise alternating layers of [Sb(OH)6]−1 octahedra and mixed [M(H2O)6]+2/[Sb(OH)6]−1 octahedra. Mopungite comprises hydrogen‐bonded layers of [Sb(OH)6]−1 octahedra linked within the layer by Na+ ions. The spectra of the three minerals were dominated by the Sb O symmetric stretch of the [Sb(OH)6]−1 octahedron, which occurs at approximately 620 cm−1. The Raman spectrum of mopungite showed many similarities to spectra of the di‐octahedral minerals, supporting the view that the Sb octahedra give rise to most of the Raman bands observed, particularly below 1200 cm−1. Assignments have been proposed on the basis of the spectral comparison between the minerals, prior literature and density functional theory (DFT) calculations of the vibrational spectra of the free [Sb(OH)6]−1 and [M(H2O)6]+2 octahedra by a model chemistry of B3LYP/6‐31G(d) and lanl2dz for the Sb atom. The single‐crystal spectra showed good mode separation, allowing most of the bands to be assigned to the symmetry species A or E. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
To ensure quality control and assurance in tissue engineering, noninvasive, real‐time and aseptic evaluation of cell‐based devices is required before product release. In this study, Raman spectroscopy was applied to monitor the cellular activities of an oral mucosa equivalent (EVPOME) produced ex vivo from cultured autogenous oral keratinocytes and acellular dermis—AlloDerm. Raman spectra showed a positive correlation of the peak area ratio of amide I (1655 cm−1)/phenylalanine (1004 cm−1) with a negative linear regression (R2 > 0.95) according to the number of cultured days, especially on the 14thand 21st day. This work demonstrates the successful application of Raman spectroscopy for quantitatively monitoring and evaluating the maturity of EVPOME. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Silver nanowires synthesized by a solvothermal method were used as templates for fabricating silver‐nanoparticle‐decorated silver (AgNP/Ag) nanowires. The number density and particle size of Ag nanoparticles can be controlled by varying the concentration of Ag precursor. Single AgNP/Ag nanowire exhibited strong surface‐enhanced Raman scattering effect. Detection of melamine molecules at concentrations as low as 1.0 × 10−8 M was used as an example to show the possible applications of such AgNP/Ag nanowires. Their application in rapid detection of melamine in milk solution was further demonstrated. It was shown that melamine in milk solution at a low concentration of 5.0 × 10−8 M can be easily detected with little sample pretreatment. The results demonstrate the potential of single AgNP/Ag nanowire as a surface‐enhanced Raman scattering substrate for convenient and sensitive detection of trace amounts of melamine in a complex mixture. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
We explore the characterization of melamine formaldehyde resin (MF‐R) micron‐sized particles, immersed in argon, neon and argon–oxygen plasmas, using Raman spectroscopy. It is shown that plasma treatment of MF‐R results in modification of its chemical composition. Particularly, a decrease in the intensities of the Raman scattering bands, corresponding to both formaldehyde C―H and melamine C―N and N―H bonds, is observed. The band at 980–990 cm−1, associated with breathing vibrations of the triazine rings, undergoes the most significant changes, and the greatest modifications of the spectra are observed after exposure to Ar and Ar–O2 plasma, whilst for the MF‐R particles exposed to Ne plasma these modifications are less pronounced. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The application of resonance Raman (RR) and surface‐enhanced resonance Raman (SERR) spectroscopies to the qualitative and semiquantitative analysis of the artificial dye indigo carmine has been examined using sodium‐citrate‐reduced silver colloid and island films with various roughnesses. Additional, the Raman spectrum of the solid state and density functional theory (DFT) calculations helped to a better understanding of the fully optimized geometry and of the vibrational wavenumbers of the dye. A strong chemical interaction of indigo carmine with the silver colloidal particles was observed mainly at very low concentration of 0.03 × 10−9 M and with silver film surfaces at a concentration of 10−4 M . The indigo carmine orientation possibilities while going to different metallic substrates are discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
In the past, non‐invasive in vivo FT‐Raman spectroscopy has been used to detect H2O2‐mediated oxidation of methionine to methionine sulfoxide and methionine sulfone, as well as cysteine to cysteic acid, in the sequence of proteins in the epidermis of patients with vitiligo. L ‐tryptophan (Trp) is another potential target for this oxidation. Owing to the presence of 10−3M epidermal albumin which contains one Trp residue, it was tempting to follow the oxidation of this amino acid. Using in vivo and in vitro FT‐Raman spectroscopy, we show for the first time that epidermal Trp is oxidised in patients with vitiligo, yielding 5‐OH‐Trp at 930 cm−1 and other oxidation products (i.e. N‐formyl kynurenine and kynurenine) from indole ring oxidation peaking at 1050 cm−1. On the basis of detailed in vitro results, we could conclude that 5‐OH‐Trp as well as formyl kynurenine and kynurenine are formed via H2O2‐mediated Fenton chemistry. These results once again bring out the strength of non‐invasive in vivo FT‐Raman Spectroscopy in dermatology to follow the effect of oxidative stress in the skin of patients with vitiligo. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Confocal Raman micro‐spectroscopy (CRMS) was used to measure time‐course spectral images of live cells undergoing apoptosis without using molecular labels or other invasive procedures. Human breast cancer cells (MDA‐MB‐231) were exposed to 300 µM etoposide to induce apoptosis, and Raman spectral images were acquired from the same cells at 2‐h intervals over a period of 6 h. The purpose‐built inverted confocal Raman micro‐spectrometer integrated an environmental enclosure and wide‐field fluorescence imaging. These key instrumental elements allowed the cells to be maintained under sterile physiological conditions (37 °C, 5% CO2) and enabled viability and apoptosis assays to be carried out on the cells at the end of CRMS measurements. The time‐course spectral images corresponding to DNA Raman bands indicated an increase in signal intensity in apoptotic cells, which was attributed to DNA condensation. The Raman spectral images of lipids indicated a high accumulation of membrane phospholipids and highly unsaturated non‐membrane lipids in apoptotic cells. This study demonstrates the potential of CRMS for label‐free time‐course imaging of individual live cells. This technique may become a useful tool for in vitro toxicological studies and testing of new pharmaceuticals, as well as other time‐dependent cellular processes, such as cell differentiation, cell cycle and cell–cell interactions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
It is a common practice in microbiology to induce and accelerate sporulation of spore‐forming bacteria by adding small amounts of divalent manganese to the cultivation medium. By micro‐Raman spectroscopy the effect of supplementary divalent manganese during the growth and sporulation of Bacillus spp. bacteria was studied. The spectral alterations in the Raman spectra of single endospores due to this cultivation parameter comprised slight alterations of the bands attributed to intracellular, abundantly present calcium dipicolinate (CaDPA). Those signals suffered a loss of intensity or partial band broadening because of the appearance of new weak signals next to them. Exclusively in Raman spectra of single B. sphaericuss endospores, the band at 1485 cm−1 vanished. The theoretical spectra of CaDPA and manganese dipicolinate (MnDPA) were calculated and compared with the experimental spectra to prove the hypothesis that, while the overall intracellular DPA content decreased, an intracellular assembly of MnDPA in the endospores might also occur. Band shifts of the COO vibrations in the salt's spectra as well as in the endospore's spectra, and the decrease of the two CaDPA bands, confirmed this proposal. The appearance of the 1030 cm−1 band in all Bacillus spectra as well as the disappearance of the 1485 cm−1 band in the B. sphaericus spectra still needs to be clarified. With the help of two multivariate chemometric methods, these spectral alterations allowed discrimination between single endospores of different Bacillus strains cultivated on normal nutrient agar (NA) and those grown on NA with MnSO4 · xH2O addition. With these investigations, a possible strategy is shown to trace back the cultivation environment of matured single endospores. Utilizing the joint concept of micro‐Raman spectroscopy and chemometric analysis, the differentiation between natively grown endospores and those cultivated in a laboratory with the help of manganous salts as a common sporulation accelerator seems accomplishable. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The micro/nano structural evolution of a PET single fibre under hydrostatic pressure has been studied by Raman micro spectroscopy in a diamond anvil cell (DAC). Different bands in the Raman spectra were used as probes: the low wavenumber collective modes (<250 cm−1) representative of the long‐range chain organization, as well as the stretching and bending amide and aromatic ring modes representative of the local chain behaviour. The in situ analysis at different pressures shows an evolution from an axial oriented trans‐conformation to an amorphous, isotropic material, i.e. the reverse transformation observed during the process of drawing the fibre from an isotropic amorphous precursor. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Using the technique of liquid‐core optical fiber (LCOF), we measured the Raman scattering cross sections (RSCSs) of the carbon–carbon (C C) stretching vibrational modes of all‐trans‐β‐carotene in carbon disulfide (CS2) at concentrations ranging from 10−6 to 10−11 M . It was found that the RSCSs of all‐trans‐β‐carotene were extremely high with decreasing concentration, and the absolute RSCS of C stretching modes of all‐trans‐β‐carotene reached the value of 2.6 × 10−20 cm2 molecule−1 Sr−1 at 8 × 10−11 M , which is larger than at 8 × 10−6 Mby 4 orders of magnitude. A theoretical interpretation of the anomalous experimental results is given, which introduces a qualitative nonlinear model of coherent weakly damped electron‐lattice vibrations in structural order of all‐trans‐β‐carotene. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
ZnSe/semi‐insulating GaAs interfaces were studied by observing photogenerated plasmon–LO (PPL) coupled modes by nonresonant micro‐Raman spectroscopy. The effect of the carriers generated by the focused laser beam was investigated for a series of different thicknesses of ZnSe epitaxial layers. The PPL mode in GaAs was observed in the micro‐Raman spectra for all samples, but with different magnitude. The plasma is believed to be an electron gas as a result of the negative nature of the interfacial region that contains predominantly hole traps. The free carrier concentration is estimated to be > 1018 cm−3 and their lifetime ∼0.1 ns. This relatively long lifetime suggests that the ZnSe/GaAs interface has to be of high structural quality leading to a low recombination velocity. ZnSe/GaAs heterostructures of less crystalline quality (as determined by resonant Raman measurements) shows the effect of photogenerated carriers only to lesser extent. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
The purpose of this study is to investigate the mechanism of solid‐state polymorphic transition of p‐aminobenzoic acid (PABA) using in situ Raman spectroscopy measurement. The polymorphic transition experiments were conducted on a micro quartz vessel mounted on a microscope, hot and cold stage, under isothermal conditions. The temperature was precisely controlled by a standalone temperature controller equipped with liquid nitrogen cooling system. The Raman spectroscopy probe was positioned on the surface of the solid sample in the micro vessel. The polymorphic transition progression was in situ monitored and recorded by Raman spectroscopy. Based on the polymorphic transition rate resulted from the quantitative analysis of Raman spectra, the mechanism of solid‐state polymorphic transition of PABA was examined by various empirical kinetic models. An Arrhenius analysis was also performed to calculate activation energies from 134.7 kJ mol−1 to 137.7 kJ mol−1 for the transition. The results demonstrated that in situ Raman spectroscopy is a valuable and accurate technique to probe polymorphic transition process. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The Raman spectra of Ge‐clinopyroxenes CaM2+Ge2O6 (M2+ = Mg, Mn, Fe, Co, Ni, Zn), general formula M2M1T2O6, are reported for the first time. Their spectral features are discussed in comparison with corresponding Si‐pyroxenes. The vibrational wavenumbers of germanates may be roughly obtained by a scale factor of about ~0.8 by those of the corresponding silicates, due to the Ge‐Si mass difference. The main peaks in the germanate Raman spectra at ~850 and ~540 cm−1 may be related to Ge‐O tetrahedral stretching and chain bending, respectively; minor peaks between 200 and 400 cm−1 are ascribed to bending and stretching of the non‐tetrahedral cations. Within Ge‐pyroxenes, possible correlations between crystallographic parameters and the vibrational wavenumbers are investigated. The main stretching mode at ~850 cm−1 shows wavenumber changes with M2+ substitutions, but no simple correlation can be found with M2+ cation mass or size. On the other hand, the chain bending wavenumber linearly decreases with increasing ionic radius of the M2+ cation: the expansion of the M1 polyhedron reduces the chain kinking angle and the Ge‐Ge distances correspondingly increase. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Raman spectroscopy has been used to characterize the antimonate mineral bahianite Al5Sb35+O14(OH)2, a semi‐precious gemstone. The mineral is characterized by an intense Raman band at 818 cm−1 assigned to Sb3O1413− stretching vibrations. Other lower intensity bands at 843 and 856 cm−1 are also assigned to this vibration, and this concept suggests the non‐equivalence of SbO units in the structure. Low‐intensity Raman bands at 669 and 682 cm−1 are probably assignable to the OSbO antisymmetric stretching vibrations. Raman bands at 1756, 1808 and 1929 cm−1 may be assigned to δ SbOH deformation modes, while the bands at 3462 and 3495 cm−1 are assigned to AlOH stretching vibrations. The complexity in the low wave number region is attributed to the composition of the mineral. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号